Spaces:
Sleeping
Sleeping
File size: 19,508 Bytes
c5a3c0b e606eca c5a3c0b e606eca c5a3c0b e606eca c5a3c0b e606eca c5a3c0b e606eca c5a3c0b e606eca c5a3c0b e606eca c5a3c0b e606eca c5a3c0b e606eca c5a3c0b e606eca c5a3c0b e606eca c5a3c0b e606eca c5a3c0b e606eca c5a3c0b e606eca c5a3c0b e606eca c5a3c0b e606eca c5a3c0b e606eca c5a3c0b e606eca c5a3c0b e606eca c5a3c0b e606eca c5a3c0b e606eca c5a3c0b e606eca c5a3c0b e606eca c5a3c0b e606eca c5a3c0b e606eca c5a3c0b e606eca c5a3c0b e606eca c5a3c0b e606eca c5a3c0b e606eca c5a3c0b e606eca c5a3c0b e606eca c5a3c0b e606eca c5a3c0b e606eca c5a3c0b e606eca c5a3c0b e606eca c5a3c0b e606eca c5a3c0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
# -*- coding: utf-8 -*-
"""
Golden Builder (Persian Legal) — Fast, Robust, W&B-enabled
- سازگار با اپ شما (app.py): کلاس GoldenBuilder + توابع load_json_or_jsonl / save_jsonl
- بهبودها:
* نرمالسازی فارسی، پاکسازی نویز
* کش O(1) برای خلاصهها
* باکتبندی برحسب طول توکن؛ جلوگیری از OOM
* autocast (bf16/fp16) برای سرعت و بهرهوری VRAM
* گیت کیفیت: طول/تنوع/عدم تکرار n-gram/چگالی و امتیاز وزنی موجودیت
* وزنها از legal_entity_weights.json خوانده میشود (خروجی Weight Tuning)
* W&B اختیاری: متادیتا + آرتیفکت دیتاست خروجی
"""
import os, re, json, hashlib, logging, math, random
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, List, Optional, Callable, Tuple
import torch
import numpy as np
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# =========================
# Logging
# =========================
log = logging.getLogger("golden-builder")
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
# =========================
# Persian Normalization & Cleaning
# =========================
ZWNJ = "\u200c"
AR_DIGITS = "٠١٢٣٤٥٦٧٨٩"
FA_DIGITS = "۰۱۲۳۴۵۶۷۸۹"
EN_DIGITS = "0123456789"
TRANS_DIG = {ord(a): e for a, e in zip(AR_DIGITS + FA_DIGITS, EN_DIGITS * 2)}
def normalize_fa(s: str) -> str:
if not isinstance(s, str): return ""
s = s.replace("\u064A", "ی").replace("\u0643", "ک")
s = s.translate(TRANS_DIG)
# حذف اعراب/کنترلها
s = re.sub(r"[\u064B-\u065F\u0610-\u061A\u200B-\u200F\u202A-\u202E\uFEFF]", "", s)
# ZWNJ یکنواخت
s = re.sub(r"\s*\s*", ZWNJ, s)
# فاصلهها
s = re.sub(r"\s+", " ", s).strip()
return s
NOISE_PATTERNS = [
r"http[s]?://\S+",
r"www\.\S+",
r"\d{10,}", # رشتههای عددی خیلی بلند
r"(.)\1{4,}", # کشیدهها
r"[^\u0600-\u06FF\s\d\.,;:!?()\"'\-]+", # کاراکترهای غیر فارسی/علائم
]
def clean_text(s: str) -> str:
s = normalize_fa(s)
for pat in NOISE_PATTERNS:
s = re.sub(pat, " ", s)
s = re.sub(r"\s+", " ", s)
s = re.sub(r"\.{2,}", "...", s)
# فاصلهگذاری علائم
s = re.sub(r"\s+([،.;:!?])", r"\1", s)
s = re.sub(r"([،.;:!?])(?=[^\s])", r"\1 ", s)
return s.strip()
# =========================
# Utils
# =========================
def md5(s: str) -> str:
return hashlib.md5(s.encode("utf-8")).hexdigest()
def lex_diversity(s: str) -> float:
toks = s.split()
return 0.0 if not toks else len(set(toks))/len(toks)
def has_repetition(s: str, n: int = 3, thr: int = 2) -> bool:
toks = s.split()
if len(toks) < n: return False
grams = [tuple(toks[i:i+n]) for i in range(len(toks)-n+1)]
from collections import Counter
return any(c > thr for c in Counter(grams).values())
def set_all_seeds(seed: int = 42):
random.seed(seed); np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed)
# =========================
# Lightweight Legal NER (Regex) with external weights
# =========================
@dataclass
class LegalEntity:
text: str; category: str; start: int; end: int; weight: float
DEFAULT_WEIGHTS = {
"STATUTE": 1.0, "COURT": 0.9, "CRIME": 1.2,
"CIVIL": 0.8, "PROCED": 0.7, "PARTY": 0.6, "BUSINESS": 0.6
}
class LegalEntityExtractor:
def __init__(self):
defs = {
"STATUTE": ([
r"قانون\s+(?:اساسی|مدنی|کیفری|کار|تجارت|مجازات|دریایی|هوایی)",
r"آیین\s+دادرسی\s+(?:مدنی|کیفری|دادگاههای\s+عمومی|اداری)",
r"ماده\s+\d+(?:\s+(?:تبصره|الحاقی|اصلاحی))?",
r"تبصره\s+\d+",
r"لایحه\s+قانونی|اصلاحیه"
], DEFAULT_WEIGHTS["STATUTE"]),
"COURT": ([
r"دیوان\s+(?:عالی|عدالت\s+اداری|محاسبات)",
r"دادگاه\s+(?:عمومی|تجدیدنظر|انقلاب|نظامی|اطفال|خانواده)",
r"شعبه\s+\d+(?:\s+دادگاه)?",
r"هیئت\s+(?:منصفه|تخلفات|عمومی)"
], DEFAULT_WEIGHTS["COURT"]),
"CRIME": ([
r"کلاهبرداری|اختلاس|ارتشا|رشوه|خیانت\s+در\s+امانت",
r"جعل(?:\s+(?:اسناد|امضا))?|سرقت(?:\s+(?:مشدد|ساده))?",
r"قتل(?:\s+(?:عمد|شبه\s+عمد|خطای\s+محض))?",
r"تصادف\s+منجر\s+به\s+فوت|قاچاق\s+(?:مواد\s+مخدر|کالا)|پولشویی"
], DEFAULT_WEIGHTS["CRIME"]),
"CIVIL": ([
r"قرارداد|عقد\s+(?:بیع|اجاره|رهن|نکاح|صلح|هبه|وکالت)",
r"خسارت|تعهد|ضمان|مطالبه|وجه\s+التزام|فسخ|اقاله",
r"مهریه|نفقه|حضانت|جهیزیه"
], DEFAULT_WEIGHTS["CIVIL"]),
"PROCED": ([
r"دادخواست|لایحه|شکوائیه|ابلاغ|جلسه\s+دادرسی|کارشناسی",
r"دلایل\s+اثباتی|استماع\s+شهود|رأی|حکم|قرار"
], DEFAULT_WEIGHTS["PROCED"]),
"PARTY": ([
r"خواهان|خواندگان?|شاکی(?:ان)?|متهم(?:ین|ان)?|محکوم\s+(?:له|علیه)",
r"وکیل\s+(?:دادگستری|پایه\s+یک)?|دادستان|بازپرس|قاضی|کارشناس\s+رسمی"
], DEFAULT_WEIGHTS["PARTY"]),
"BUSINESS": ([
r"شرکت\s+(?:سهامی|مسئولیت\s+محدود|تضامنی)|ورشکستگی|نکول|سهام",
r"چک|سفته|برات|اوراق\s+بهادار|مجمع\s+عمومی"
], DEFAULT_WEIGHTS["BUSINESS"])
}
# Override از فایل خارجی اگر موجود
learned = {}
try:
if os.path.exists("legal_entity_weights.json"):
with open("legal_entity_weights.json","r",encoding="utf-8") as f:
learned = json.load(f)
except Exception:
learned = {}
self._patterns = []
for cat, (ps, w) in defs.items():
ww = float(learned.get(cat, w))
for p in ps:
self._patterns.append((re.compile(p, re.IGNORECASE), cat, ww))
self._cache = {}
def extract(self, text: str) -> List[LegalEntity]:
h = md5(text)
if h in self._cache: return self._cache[h]
out, seen = [], set()
for rgx, cat, w in self._patterns:
for m in rgx.finditer(text):
s,e = m.span()
if (s,e) in seen: continue
seen.add((s,e))
out.append(LegalEntity(m.group(), cat, s, e, w))
out.sort(key=lambda x: x.start)
if len(self._cache) < 1000: self._cache[h] = out
return out
def weighted_score(self, entities: List[LegalEntity]) -> float:
# جمع وزنها با طول توکنهای موجودیت به عنوان تقویتکننده
score = 0.0
for e in entities:
span_len = max(len(e.text.split()), 1)
score += e.weight * math.log1p(span_len)
return score
# =========================
# Golden Builder
# =========================
@dataclass
class GBConfig:
min_src_tokens: int = 30
min_tgt_tokens: int = 20
max_tgt_tokens: int = 220
target_minmax_ratio: Tuple[float,float] = (0.12, 0.65) # len(tgt)/len(src)
min_lex_div: float = 0.40
ngram_repeat_n: int = 3
ngram_repeat_thr: int = 2
min_entity_count: int = 2
min_entity_weight_score: float = 2.0 # آستانه امتیاز وزنی برای قبولی
class GoldenBuilder:
"""
Drop-in replacement
"""
def __init__(
self,
model_name: str = "google/mt5-base",
device: Optional[str] = None,
min_len: int = 40,
max_len: int = 160,
seed: int = 42
):
set_all_seeds(seed)
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
log.info("Device: %s", self.device)
self.tok = AutoTokenizer.from_pretrained(model_name, use_fast=True)
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
self.model.to(self.device).eval()
self.min_len = int(min_len)
self.max_len = int(max_len)
self.cfg = GBConfig()
self.ner = LegalEntityExtractor()
# dtype & autocast تنظیم
if torch.cuda.is_available() and torch.cuda.is_bf16_supported():
self._amp_dtype = torch.bfloat16
elif torch.cuda.is_available():
self._amp_dtype = torch.float16
else:
self._amp_dtype = torch.float32
# کش خلاصهها و seen
self._summary_cache: Dict[str, str] = {}
self._seen_hashes = set()
# W&B اختیاری
self._wandb_on = bool(os.getenv("WANDB_API_KEY"))
self._wb_run = None
if self._wandb_on:
try:
import wandb
self._wb = wandb
self._wb_run = wandb.init(
project=os.getenv("WANDB_PROJECT","mahoon-legal-ai"),
name="dataset_builder",
config={"model_name": model_name, "min_len": self.min_len, "max_len": self.max_len}
)
except Exception:
self._wandb_on = False
self._wb_run = None
# --------------------- I/O helpers ---------------------
def _encode(self, texts: List[str], max_length: int = 512):
return self.tok(
texts,
return_tensors="pt",
truncation=True,
padding=True,
max_length=max_length
).to(self.device)
# --------------------- Batching & Caching ---------------------
def _summarize_uncached(self, items: List[Tuple[int, str]], num_beams: int = 6, batch_tokens: int = 1400) -> Dict[int, str]:
"""
items: list of (original_index, text_with_prefix)
strategy: sort by length; greedy micro-batches under token budget
returns: {original_index: summary}
"""
if not items: return {}
# تخمین طول توکنی
lens = [len(self.tok(t, add_special_tokens=False).input_ids) for _, t in items]
order = np.argsort(lens) # از کوتاه به بلند
results: Dict[int, str] = {}
batch: List[Tuple[int, str]] = []
budget = 0
def flush_batch(B: List[Tuple[int,str]]):
if not B: return
idxs = [i for i,_ in B]
texts = [t for _,t in B]
inputs = self._encode(texts, max_length=512)
with torch.no_grad():
with torch.autocast(device_type="cuda" if torch.cuda.is_available() else "cpu", dtype=self._amp_dtype):
ids = self.model.generate(
**inputs,
max_length=self.max_len,
min_length=self.min_len,
num_beams=num_beams,
length_penalty=2.5,
no_repeat_ngram_size=3,
early_stopping=True,
do_sample=False
)
outs = self.tok.batch_decode(ids, skip_special_tokens=True)
for i, gen in zip(idxs, outs):
results[i] = gen
for idx in order:
oi, txt = items[idx]
tlen = lens[idx]
if budget + tlen > batch_tokens and batch:
flush_batch(batch)
batch, budget = [], 0
batch.append((oi, txt)); budget += tlen
if batch:
flush_batch(batch)
return results
def _summarize_batch(self, texts: List[str], num_beams: int = 6) -> List[str]:
"""
ورودی: لیست متنها (هر متن شامل prefix "summarize: ...")
خروجی: لیست خلاصهها به همان ترتیب ورودی
"""
if not texts: return []
results = [None] * len(texts)
uncached: List[Tuple[int,str]] = []
for i, t in enumerate(texts):
h = md5(t)
if h in self._summary_cache:
results[i] = self._summary_cache[h]
else:
uncached.append((i, t))
if uncached:
out_map = self._summarize_uncached(uncached, num_beams=num_beams)
for i, _ in uncached:
results[i] = out_map.get(i, "")
# update cache
h = md5(texts[i])
if len(self._summary_cache) < 10000 and results[i]:
self._summary_cache[h] = results[i]
return [r or "" for r in results]
# --------------------- Quality Gate ---------------------
def _quality_gate(self, src: str, tgt: str, ents: List[LegalEntity]) -> bool:
s_len, t_len = len(src.split()), len(tgt.split())
if s_len < self.cfg.min_src_tokens: return False
if not (self.cfg.min_tgt_tokens <= t_len <= self.cfg.max_tgt_tokens): return False
comp = t_len / (s_len + 1e-8)
if not (self.cfg.target_minmax_ratio[0] <= comp <= self.cfg.target_minmax_ratio[1]): return False
if lex_diversity(tgt) < self.cfg.min_lex_div: return False
if has_repetition(tgt, self.cfg.ngram_repeat_n, self.cfg.ngram_repeat_thr): return False
# موجودیتها: حداقل تعداد + حداقل امتیاز وزنی
if len(ents) < self.cfg.min_entity_count: return False
wscore = self.ner.weighted_score(ents)
if wscore < self.cfg.min_entity_weight_score: return False
return True
# --------------------- Public API ---------------------
def build(
self,
raw_items: List[Dict],
text_key: str = "متن_کامل",
batch_size: int = 4,
progress: Optional[Callable[[float, str], None]] = None
) -> List[Dict]:
"""
EXACT SAME signature (+progress اختیاری برای اتصال به Gradio)
"""
rows = []
N = len(raw_items)
if progress: progress(0.0, "شروع ساخت دیتاست")
log.info(f"Starting build: N={N}, text_key='{text_key}'")
processed = passed = failed = skipped = 0
i = 0
while i < N:
chunk = raw_items[i:i+batch_size]
# pre-clean & filter
cleaned = []
for it in chunk:
raw = it.get(text_key, "")
txt = clean_text(str(raw))
if len(txt.split()) < self.cfg.min_src_tokens:
skipped += 1
cleaned.append("") # placeholder برای چینش
else:
h = md5(txt)
if h in self._seen_hashes:
skipped += 1
cleaned.append("")
else:
self._seen_hashes.add(h)
cleaned.append(txt)
# آمادهسازی ورودیهای summary
todo_texts = [f"summarize: {c}" for c in cleaned if c]
outputs = self._summarize_batch(todo_texts) if todo_texts else []
# بازچینی خروجیها روی cleaned
k = 0
for c in cleaned:
if not c:
continue
processed += 1
tgt = clean_text(outputs[k]); k += 1
ents = self.ner.extract(c)
if self._quality_gate(c, tgt, ents):
passed += 1
rows.append({
"input": f"summarize: {c}",
"output": tgt,
"metadata": {
"input_length": len(c.split()),
"target_length": len(tgt.split()),
"entity_count": len(ents),
"entity_weight_score": self.ner.weighted_score(ents)
},
"legal_entities": [
{"text": e.text, "category": e.category, "start": e.start, "end": e.end, "weight": e.weight}
for e in (ents[:24])
]
})
else:
failed += 1
i += batch_size
if progress:
msg = f"پیشرفت: {i}/{N} | معتبر: {len(rows)} | قبولی: {passed} | مردودی: {failed} | رد اولیه: {skipped}"
progress(min(i/N, 0.99), msg)
if (i // max(batch_size,1)) % 10 == 0:
log.info(f"Progress {i}/{N} | kept={len(rows)} pass_rate={passed/max(processed,1):.1%}")
# W&B logging
if self._wandb_on and self._wb_run is not None:
try:
kept = len(rows)
self._wb_run.summary.update({
"dataset_examples": kept,
"processed": processed,
"passed": passed,
"failed": failed,
"skipped": skipped,
"pass_rate": kept / max(processed, 1)
})
except Exception:
pass
if progress: progress(1.0, "اتمام ساخت دیتاست")
log.info(f"Build complete: kept={len(rows)} | processed={processed} | passed={passed} | failed={failed} | skipped={skipped}")
return rows
def save_as_artifact(self, rows: List[Dict], out_path: str = "/tmp/golden_dataset.jsonl", artifact_name: str = "golden-dataset"):
"""اختیاری: خروجی را ذخیره و به W&B آرتیفکت کنید."""
save_jsonl(rows, out_path)
if self._wandb_on and self._wb_run is not None:
try:
art = self._wb.Artifact(artifact_name, type="dataset")
art.add_file(out_path)
self._wb_run.log_artifact(art)
except Exception:
pass
return out_path
# =========================
# I/O helpers
# =========================
def load_json_or_jsonl(path: str) -> List[Dict]:
p = Path(path)
raw = p.read_text(encoding="utf-8").strip()
# JSON یا JSONL
try:
data = json.loads(raw)
return data if isinstance(data, list) else [data]
except json.JSONDecodeError:
out = []
for ln in raw.splitlines():
ln = ln.strip()
if not ln: continue
try: out.append(json.loads(ln))
except json.JSONDecodeError: pass
return out
def save_jsonl(rows: List[Dict], out_path: str):
p = Path(out_path); p.parent.mkdir(parents=True, exist_ok=True)
with p.open("w", encoding="utf-8") as f:
for r in rows:
f.write(json.dumps(r, ensure_ascii=False) + "\n")
|