File size: 19,508 Bytes
c5a3c0b
e606eca
 
 
 
 
 
 
 
 
 
 
 
 
 
c5a3c0b
 
e606eca
c5a3c0b
 
e606eca
c5a3c0b
 
e606eca
 
 
c5a3c0b
 
 
e606eca
 
 
 
 
 
 
 
c5a3c0b
e606eca
c5a3c0b
e606eca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5a3c0b
 
e606eca
c5a3c0b
 
 
 
e606eca
 
 
c5a3c0b
e606eca
c5a3c0b
 
 
 
 
e606eca
c5a3c0b
 
 
 
e606eca
 
 
 
 
 
c5a3c0b
e606eca
 
 
c5a3c0b
 
 
 
e606eca
 
 
 
 
c5a3c0b
 
e606eca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5a3c0b
e606eca
 
 
 
 
 
 
 
 
 
c5a3c0b
e606eca
 
 
 
 
c5a3c0b
e606eca
 
 
c5a3c0b
 
 
 
 
 
 
 
e606eca
c5a3c0b
 
e606eca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5a3c0b
e606eca
 
 
 
 
 
 
 
 
 
 
 
c5a3c0b
 
e606eca
c5a3c0b
e606eca
 
 
 
 
 
 
c5a3c0b
 
e606eca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5a3c0b
e606eca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5a3c0b
e606eca
 
 
 
 
 
 
 
 
 
 
c5a3c0b
 
e606eca
 
 
 
 
 
 
 
 
 
 
 
c5a3c0b
e606eca
 
 
 
 
c5a3c0b
 
e606eca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5a3c0b
e606eca
c5a3c0b
e606eca
c5a3c0b
 
e606eca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5a3c0b
e606eca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5a3c0b
 
e606eca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5a3c0b
 
 
e606eca
c5a3c0b
 
 
 
 
 
 
 
e606eca
 
c5a3c0b
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
# -*- coding: utf-8 -*-
"""
Golden Builder (Persian Legal) — Fast, Robust, W&B-enabled
- سازگار با اپ شما (app.py): کلاس GoldenBuilder + توابع load_json_or_jsonl / save_jsonl
- بهبودها:
  * نرمال‌سازی فارسی، پاکسازی نویز
  * کش O(1) برای خلاصه‌ها
  * باکت‌بندی برحسب طول توکن؛ جلوگیری از OOM
  * autocast (bf16/fp16) برای سرعت و بهره‌وری VRAM
  * گیت کیفیت: طول/تنوع/عدم تکرار n-gram/چگالی و امتیاز وزنی موجودیت
  * وزن‌ها از legal_entity_weights.json خوانده می‌شود (خروجی Weight Tuning)
  * W&B اختیاری: متادیتا + آرتیفکت دیتاست خروجی
"""

import os, re, json, hashlib, logging, math, random
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, List, Optional, Callable, Tuple

import torch
import numpy as np
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

# =========================
# Logging
# =========================
log = logging.getLogger("golden-builder")
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")

# =========================
# Persian Normalization & Cleaning
# =========================
ZWNJ = "\u200c"
AR_DIGITS = "٠١٢٣٤٥٦٧٨٩"
FA_DIGITS = "۰۱۲۳۴۵۶۷۸۹"
EN_DIGITS = "0123456789"
TRANS_DIG = {ord(a): e for a, e in zip(AR_DIGITS + FA_DIGITS, EN_DIGITS * 2)}

def normalize_fa(s: str) -> str:
    if not isinstance(s, str): return ""
    s = s.replace("\u064A", "ی").replace("\u0643", "ک")
    s = s.translate(TRANS_DIG)
    # حذف اعراب/کنترل‌ها
    s = re.sub(r"[\u064B-\u065F\u0610-\u061A\u200B-\u200F\u202A-\u202E\uFEFF]", "", s)
    # ZWNJ یکنواخت
    s = re.sub(r"\s*‌\s*", ZWNJ, s)
    # فاصله‌ها
    s = re.sub(r"\s+", " ", s).strip()
    return s

NOISE_PATTERNS = [
    r"http[s]?://\S+",
    r"www\.\S+",
    r"\d{10,}",                 # رشته‌های عددی خیلی بلند
    r"(.)\1{4,}",               # کشیده‌ها
    r"[^\u0600-\u06FF\s\d\.,;:!?()\"'\-]+",  # کاراکترهای غیر فارسی/علائم
]

def clean_text(s: str) -> str:
    s = normalize_fa(s)
    for pat in NOISE_PATTERNS:
        s = re.sub(pat, " ", s)
    s = re.sub(r"\s+", " ", s)
    s = re.sub(r"\.{2,}", "...", s)
    # فاصله‌گذاری علائم
    s = re.sub(r"\s+([،.;:!?])", r"\1", s)
    s = re.sub(r"([،.;:!?])(?=[^\s])", r"\1 ", s)
    return s.strip()

# =========================
# Utils
# =========================
def md5(s: str) -> str:
    return hashlib.md5(s.encode("utf-8")).hexdigest()

def lex_diversity(s: str) -> float:
    toks = s.split()
    return 0.0 if not toks else len(set(toks))/len(toks)

def has_repetition(s: str, n: int = 3, thr: int = 2) -> bool:
    toks = s.split()
    if len(toks) < n: return False
    grams = [tuple(toks[i:i+n]) for i in range(len(toks)-n+1)]
    from collections import Counter
    return any(c > thr for c in Counter(grams).values())

def set_all_seeds(seed: int = 42):
    random.seed(seed); np.random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed)

# =========================
# Lightweight Legal NER (Regex) with external weights
# =========================
@dataclass
class LegalEntity:
    text: str; category: str; start: int; end: int; weight: float

DEFAULT_WEIGHTS = {
    "STATUTE": 1.0, "COURT": 0.9, "CRIME": 1.2,
    "CIVIL": 0.8, "PROCED": 0.7, "PARTY": 0.6, "BUSINESS": 0.6
}

class LegalEntityExtractor:
    def __init__(self):
        defs = {
            "STATUTE": ([
                r"قانون\s+(?:اساسی|مدنی|کیفری|کار|تجارت|مجازات|دریایی|هوایی)",
                r"آیین\s+دادرسی\s+(?:مدنی|کیفری|دادگاه‌های\s+عمومی|اداری)",
                r"ماده\s+\d+(?:\s+(?:تبصره|الحاقی|اصلاحی))?",
                r"تبصره\s+\d+",
                r"لایحه\s+قانونی|اصلاحیه"
            ], DEFAULT_WEIGHTS["STATUTE"]),
            "COURT": ([
                r"دیوان\s+(?:عالی|عدالت\s+اداری|محاسبات)",
                r"دادگاه\s+(?:عمومی|تجدیدنظر|انقلاب|نظامی|اطفال|خانواده)",
                r"شعبه\s+\d+(?:\s+دادگاه)?",
                r"هیئت\s+(?:منصفه|تخلفات|عمومی)"
            ], DEFAULT_WEIGHTS["COURT"]),
            "CRIME": ([
                r"کلاهبرداری|اختلاس|ارتشا|رشوه|خیانت\s+در\s+امانت",
                r"جعل(?:\s+(?:اسناد|امضا))?|سرقت(?:\s+(?:مشدد|ساده))?",
                r"قتل(?:\s+(?:عمد|شبه\s+عمد|خطای\s+محض))?",
                r"تصادف\s+منجر\s+به\s+فوت|قاچاق\s+(?:مواد\s+مخدر|کالا)|پولشویی"
            ], DEFAULT_WEIGHTS["CRIME"]),
            "CIVIL": ([
                r"قرارداد|عقد\s+(?:بیع|اجاره|رهن|نکاح|صلح|هبه|وکالت)",
                r"خسارت|تعهد|ضمان|مطالبه|وجه\s+التزام|فسخ|اقاله",
                r"مهریه|نفقه|حضانت|جهیزیه"
            ], DEFAULT_WEIGHTS["CIVIL"]),
            "PROCED": ([
                r"دادخواست|لایحه|شکوائیه|ابلاغ|جلسه\s+دادرسی|کارشناسی",
                r"دلایل\s+اثباتی|استماع\s+شهود|رأی|حکم|قرار"
            ], DEFAULT_WEIGHTS["PROCED"]),
            "PARTY": ([
                r"خواهان|خواندگان?|شاکی(?:ان)?|متهم(?:ین|ان)?|محکوم\s+(?:له|علیه)",
                r"وکیل\s+(?:دادگستری|پایه\s+یک)?|دادستان|بازپرس|قاضی|کارشناس\s+رسمی"
            ], DEFAULT_WEIGHTS["PARTY"]),
            "BUSINESS": ([
                r"شرکت\s+(?:سهامی|مسئولیت\s+محدود|تضامنی)|ورشکستگی|نکول|سهام",
                r"چک|سفته|برات|اوراق\s+بهادار|مجمع\s+عمومی"
            ], DEFAULT_WEIGHTS["BUSINESS"])
        }

        # Override از فایل خارجی اگر موجود
        learned = {}
        try:
            if os.path.exists("legal_entity_weights.json"):
                with open("legal_entity_weights.json","r",encoding="utf-8") as f:
                    learned = json.load(f)
        except Exception:
            learned = {}

        self._patterns = []
        for cat, (ps, w) in defs.items():
            ww = float(learned.get(cat, w))
            for p in ps:
                self._patterns.append((re.compile(p, re.IGNORECASE), cat, ww))
        self._cache = {}

    def extract(self, text: str) -> List[LegalEntity]:
        h = md5(text)
        if h in self._cache: return self._cache[h]
        out, seen = [], set()
        for rgx, cat, w in self._patterns:
            for m in rgx.finditer(text):
                s,e = m.span()
                if (s,e) in seen: continue
                seen.add((s,e))
                out.append(LegalEntity(m.group(), cat, s, e, w))
        out.sort(key=lambda x: x.start)
        if len(self._cache) < 1000: self._cache[h] = out
        return out

    def weighted_score(self, entities: List[LegalEntity]) -> float:
        # جمع وزن‌ها با طول توکن‌های موجودیت به عنوان تقویت‌کننده
        score = 0.0
        for e in entities:
            span_len = max(len(e.text.split()), 1)
            score += e.weight * math.log1p(span_len)
        return score

# =========================
# Golden Builder
# =========================
@dataclass
class GBConfig:
    min_src_tokens: int = 30
    min_tgt_tokens: int = 20
    max_tgt_tokens: int = 220
    target_minmax_ratio: Tuple[float,float] = (0.12, 0.65)  # len(tgt)/len(src)
    min_lex_div: float = 0.40
    ngram_repeat_n: int = 3
    ngram_repeat_thr: int = 2
    min_entity_count: int = 2
    min_entity_weight_score: float = 2.0  # آستانه امتیاز وزنی برای قبولی

class GoldenBuilder:
    """
    Drop-in replacement
    """
    def __init__(
        self,
        model_name: str = "google/mt5-base",
        device: Optional[str] = None,
        min_len: int = 40,
        max_len: int = 160,
        seed: int = 42
    ):
        set_all_seeds(seed)
        self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
        log.info("Device: %s", self.device)

        self.tok = AutoTokenizer.from_pretrained(model_name, use_fast=True)
        self.model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
        self.model.to(self.device).eval()

        self.min_len = int(min_len)
        self.max_len = int(max_len)

        self.cfg = GBConfig()
        self.ner = LegalEntityExtractor()

        # dtype & autocast تنظیم
        if torch.cuda.is_available() and torch.cuda.is_bf16_supported():
            self._amp_dtype = torch.bfloat16
        elif torch.cuda.is_available():
            self._amp_dtype = torch.float16
        else:
            self._amp_dtype = torch.float32

        # کش خلاصه‌ها و seen
        self._summary_cache: Dict[str, str] = {}
        self._seen_hashes = set()

        # W&B اختیاری
        self._wandb_on = bool(os.getenv("WANDB_API_KEY"))
        self._wb_run = None
        if self._wandb_on:
            try:
                import wandb
                self._wb = wandb
                self._wb_run = wandb.init(
                    project=os.getenv("WANDB_PROJECT","mahoon-legal-ai"),
                    name="dataset_builder",
                    config={"model_name": model_name, "min_len": self.min_len, "max_len": self.max_len}
                )
            except Exception:
                self._wandb_on = False
                self._wb_run = None

    # --------------------- I/O helpers ---------------------
    def _encode(self, texts: List[str], max_length: int = 512):
        return self.tok(
            texts,
            return_tensors="pt",
            truncation=True,
            padding=True,
            max_length=max_length
        ).to(self.device)

    # --------------------- Batching & Caching ---------------------
    def _summarize_uncached(self, items: List[Tuple[int, str]], num_beams: int = 6, batch_tokens: int = 1400) -> Dict[int, str]:
        """
        items: list of (original_index, text_with_prefix)
        strategy: sort by length; greedy micro-batches under token budget
        returns: {original_index: summary}
        """
        if not items: return {}
        # تخمین طول توکنی
        lens = [len(self.tok(t, add_special_tokens=False).input_ids) for _, t in items]
        order = np.argsort(lens)  # از کوتاه به بلند

        results: Dict[int, str] = {}
        batch: List[Tuple[int, str]] = []
        budget = 0

        def flush_batch(B: List[Tuple[int,str]]):
            if not B: return
            idxs = [i for i,_ in B]
            texts = [t for _,t in B]
            inputs = self._encode(texts, max_length=512)
            with torch.no_grad():
                with torch.autocast(device_type="cuda" if torch.cuda.is_available() else "cpu", dtype=self._amp_dtype):
                    ids = self.model.generate(
                        **inputs,
                        max_length=self.max_len,
                        min_length=self.min_len,
                        num_beams=num_beams,
                        length_penalty=2.5,
                        no_repeat_ngram_size=3,
                        early_stopping=True,
                        do_sample=False
                    )
            outs = self.tok.batch_decode(ids, skip_special_tokens=True)
            for i, gen in zip(idxs, outs):
                results[i] = gen

        for idx in order:
            oi, txt = items[idx]
            tlen = lens[idx]
            if budget + tlen > batch_tokens and batch:
                flush_batch(batch)
                batch, budget = [], 0
            batch.append((oi, txt)); budget += tlen
        if batch:
            flush_batch(batch)
        return results

    def _summarize_batch(self, texts: List[str], num_beams: int = 6) -> List[str]:
        """
        ورودی: لیست متن‌ها (هر متن شامل prefix "summarize: ...")
        خروجی: لیست خلاصه‌ها به همان ترتیب ورودی
        """
        if not texts: return []
        results = [None] * len(texts)
        uncached: List[Tuple[int,str]] = []
        for i, t in enumerate(texts):
            h = md5(t)
            if h in self._summary_cache:
                results[i] = self._summary_cache[h]
            else:
                uncached.append((i, t))
        if uncached:
            out_map = self._summarize_uncached(uncached, num_beams=num_beams)
            for i, _ in uncached:
                results[i] = out_map.get(i, "")
                # update cache
                h = md5(texts[i])
                if len(self._summary_cache) < 10000 and results[i]:
                    self._summary_cache[h] = results[i]
        return [r or "" for r in results]

    # --------------------- Quality Gate ---------------------
    def _quality_gate(self, src: str, tgt: str, ents: List[LegalEntity]) -> bool:
        s_len, t_len = len(src.split()), len(tgt.split())
        if s_len < self.cfg.min_src_tokens: return False
        if not (self.cfg.min_tgt_tokens <= t_len <= self.cfg.max_tgt_tokens): return False
        comp = t_len / (s_len + 1e-8)
        if not (self.cfg.target_minmax_ratio[0] <= comp <= self.cfg.target_minmax_ratio[1]): return False
        if lex_diversity(tgt) < self.cfg.min_lex_div: return False
        if has_repetition(tgt, self.cfg.ngram_repeat_n, self.cfg.ngram_repeat_thr): return False

        # موجودیت‌ها: حداقل تعداد + حداقل امتیاز وزنی
        if len(ents) < self.cfg.min_entity_count: return False
        wscore = self.ner.weighted_score(ents)
        if wscore < self.cfg.min_entity_weight_score: return False
        return True

    # --------------------- Public API ---------------------
    def build(
        self,
        raw_items: List[Dict],
        text_key: str = "متن_کامل",
        batch_size: int = 4,
        progress: Optional[Callable[[float, str], None]] = None
    ) -> List[Dict]:
        """
        EXACT SAME signature (+progress اختیاری برای اتصال به Gradio)
        """
        rows = []
        N = len(raw_items)
        if progress: progress(0.0, "شروع ساخت دیتاست")
        log.info(f"Starting build: N={N}, text_key='{text_key}'")

        processed = passed = failed = skipped = 0
        i = 0
        while i < N:
            chunk = raw_items[i:i+batch_size]
            # pre-clean & filter
            cleaned = []
            for it in chunk:
                raw = it.get(text_key, "")
                txt = clean_text(str(raw))
                if len(txt.split()) < self.cfg.min_src_tokens:
                    skipped += 1
                    cleaned.append("")  # placeholder برای چینش
                else:
                    h = md5(txt)
                    if h in self._seen_hashes:
                        skipped += 1
                        cleaned.append("")
                    else:
                        self._seen_hashes.add(h)
                        cleaned.append(txt)

            # آماده‌سازی ورودی‌های summary
            todo_texts = [f"summarize: {c}" for c in cleaned if c]
            outputs = self._summarize_batch(todo_texts) if todo_texts else []
            # بازچینی خروجی‌ها روی cleaned
            k = 0
            for c in cleaned:
                if not c:
                    continue
                processed += 1
                tgt = clean_text(outputs[k]); k += 1
                ents = self.ner.extract(c)
                if self._quality_gate(c, tgt, ents):
                    passed += 1
                    rows.append({
                        "input": f"summarize: {c}",
                        "output": tgt,
                        "metadata": {
                            "input_length": len(c.split()),
                            "target_length": len(tgt.split()),
                            "entity_count": len(ents),
                            "entity_weight_score": self.ner.weighted_score(ents)
                        },
                        "legal_entities": [
                            {"text": e.text, "category": e.category, "start": e.start, "end": e.end, "weight": e.weight}
                            for e in (ents[:24])
                        ]
                    })
                else:
                    failed += 1

            i += batch_size
            if progress:
                msg = f"پیشرفت: {i}/{N} | معتبر: {len(rows)} | قبولی: {passed} | مردودی: {failed} | رد اولیه: {skipped}"
                progress(min(i/N, 0.99), msg)
            if (i // max(batch_size,1)) % 10 == 0:
                log.info(f"Progress {i}/{N} | kept={len(rows)} pass_rate={passed/max(processed,1):.1%}")

        # W&B logging
        if self._wandb_on and self._wb_run is not None:
            try:
                kept = len(rows)
                self._wb_run.summary.update({
                    "dataset_examples": kept,
                    "processed": processed,
                    "passed": passed,
                    "failed": failed,
                    "skipped": skipped,
                    "pass_rate": kept / max(processed, 1)
                })
            except Exception:
                pass

        if progress: progress(1.0, "اتمام ساخت دیتاست")
        log.info(f"Build complete: kept={len(rows)} | processed={processed} | passed={passed} | failed={failed} | skipped={skipped}")
        return rows

    def save_as_artifact(self, rows: List[Dict], out_path: str = "/tmp/golden_dataset.jsonl", artifact_name: str = "golden-dataset"):
        """اختیاری: خروجی را ذخیره و به W&B آرتیفکت کنید."""
        save_jsonl(rows, out_path)
        if self._wandb_on and self._wb_run is not None:
            try:
                art = self._wb.Artifact(artifact_name, type="dataset")
                art.add_file(out_path)
                self._wb_run.log_artifact(art)
            except Exception:
                pass
        return out_path

# =========================
# I/O helpers
# =========================
def load_json_or_jsonl(path: str) -> List[Dict]:
    p = Path(path)
    raw = p.read_text(encoding="utf-8").strip()
    # JSON یا JSONL
    try:
        data = json.loads(raw)
        return data if isinstance(data, list) else [data]
    except json.JSONDecodeError:
        out = []
        for ln in raw.splitlines():
            ln = ln.strip()
            if not ln: continue
            try: out.append(json.loads(ln))
            except json.JSONDecodeError: pass
        return out

def save_jsonl(rows: List[Dict], out_path: str):
    p = Path(out_path); p.parent.mkdir(parents=True, exist_ok=True)
    with p.open("w", encoding="utf-8") as f:
        for r in rows:
            f.write(json.dumps(r, ensure_ascii=False) + "\n")