import gradio as gr from huggingface_hub import InferenceClient from agent.prompts import production_prompt from agent.graph import graph from langchain_core.messages import HumanMessage, SystemMessage def respond( message, history: list[tuple[str, str]], #system_message, #max_tokens, #temperature, #top_p, ): messages = [{"role": "system", "content": production_prompt}] #messages = [ # SystemMessage(production_prompt), # HumanMessage(message) #] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) #if len(message["files"]) > 0: # pass #else: #messages.append({"role": "user", "content": message["text"]}) messages.append({"role": "user", "content": message}) print(messages) # Remember to change the filename when applying multimodality response = graph.invoke( input={'messages' : messages, 'filename' : "", 'file_extension' : ""}, config={'recursion_limit' : 10} ) return response["messages"][-1].content """ for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ demo = gr.ChatInterface( respond, #examples = ["What is the capital of Letonia?", "How much people live in Paradis?"], #multimodal = True, #additional_inputs=[ # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), # gr.Slider( # minimum=0.1, # maximum=1.0, # value=0.95, # step=0.05, # label="Top-p (nucleus sampling)", # ), #], ) if __name__ == "__main__": demo.launch()