Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer,StoppingCriteria,StoppingCriteriaList,pipeline | |
| from langchain.chains import ConversationChain | |
| from langchain.chains.conversation.memory import ConversationBufferWindowMemory | |
| from langchain.llms import HuggingFacePipeline | |
| from langchain import PromptTemplate | |
| from typing import List | |
| import torch | |
| # Load the model and tokenizer | |
| tokenizer = AutoTokenizer.from_pretrained("gpt2") | |
| model = AutoModelForCausalLM.from_pretrained("gpt2") | |
| generation_config = model.generation_config | |
| generation_config.temperature = 0 | |
| generation_config.num_return_sequences = 1 | |
| generation_config.max_new_tokens = 256 | |
| generation_config.use_cache = False | |
| generation_config.repetition_penalty = 1.7 | |
| generation_config.pad_token_id = tokenizer.eos_token_id | |
| generation_config.eos_token_id = tokenizer.eos_token_id | |
| generation_config | |
| stop_tokens = [["Human", ":"], ["AI", ":"]] | |
| class StopGenerationCriteria(StoppingCriteria): | |
| def __init__( | |
| self, tokens: List[List[str]], tokenizer: AutoTokenizer, device: torch.device | |
| ): | |
| stop_token_ids = [tokenizer.convert_tokens_to_ids(t) for t in tokens] | |
| self.stop_token_ids = [ | |
| torch.tensor(x, dtype=torch.long, device=device) for x in stop_token_ids | |
| ] | |
| def __call__( | |
| self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs | |
| ) -> bool: | |
| for stop_ids in self.stop_token_ids: | |
| if torch.eq(input_ids[0][-len(stop_ids) :], stop_ids).all(): | |
| return True | |
| return False | |
| stopping_criteria = StoppingCriteriaList( | |
| [StopGenerationCriteria(stop_tokens, tokenizer, model.device)] | |
| ) | |
| class StopGenerationCriteria(StoppingCriteria): | |
| def __init__( | |
| self, tokens: List[List[str]], tokenizer: AutoTokenizer, device: torch.device | |
| ): | |
| stop_token_ids = [tokenizer.convert_tokens_to_ids(t) for t in tokens] | |
| self.stop_token_ids = [ | |
| torch.tensor(x, dtype=torch.long, device=device) for x in stop_token_ids | |
| ] | |
| def __call__( | |
| self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs | |
| ) -> bool: | |
| for stop_ids in self.stop_token_ids: | |
| if torch.eq(input_ids[0][-len(stop_ids) :], stop_ids).all(): | |
| return True | |
| return False | |
| generation_pipeline = pipeline( | |
| model=model, | |
| tokenizer=tokenizer, | |
| return_full_text=True, | |
| task="text-generation", | |
| stopping_criteria=stopping_criteria, | |
| generation_config=generation_config, | |
| ) | |
| llm = HuggingFacePipeline(pipeline=generation_pipeline) | |
| template = """ | |
| The following | |
| Current conversation: | |
| {history} | |
| Human: {input} | |
| AI:""".strip() | |
| prompt = PromptTemplate(input_variables=["history", "input"], template=template) | |
| memory = ConversationBufferWindowMemory( | |
| memory_key="history", k=6, return_only_outputs=True | |
| ) | |
| chain = ConversationChain( | |
| llm=llm, | |
| prompt=prompt, | |
| verbose=True, | |
| ) | |
| def generate_response(input_text): | |
| res=chain.invoke(input_text) | |
| print('response:',res) | |
| print(4444444444444444444444444444444444444444444444) | |
| inputs = tokenizer(input_text, return_tensors="pt") | |
| outputs = model.generate(inputs.input_ids, max_length=50) | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return res | |
| iface = gr.Interface(fn=generate_response, inputs="text", outputs="text") | |
| iface.launch() |