Spaces:
Running
Running
| import torch | |
| from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor | |
| from qwen_vl_utils import process_vision_info | |
| import gradio as gr | |
| from PIL import Image | |
| from huggingface_hub import login | |
| import os | |
| import warnings | |
| # 抑制警告 | |
| warnings.filterwarnings("ignore", category=RuntimeWarning) | |
| # ========== 使用你的 secret 名称 fmv 登录 ========== | |
| token = os.getenv("fmv") | |
| if token: | |
| login(token=token) | |
| print("Successfully logged in with token!") | |
| else: | |
| print("Warning: Token not found") | |
| # ========================================== | |
| # Hugging Face model repository path | |
| model_path = "hiko1999/Qwen2-Wildfire-2B" | |
| # Load model and processor | |
| print(f"Loading model: {model_path}") | |
| tokenizer = AutoTokenizer.from_pretrained(model_path) | |
| model = Qwen2VLForConditionalGeneration.from_pretrained( | |
| model_path, | |
| torch_dtype=torch.bfloat16, | |
| device_map="cpu" | |
| ) | |
| processor = AutoProcessor.from_pretrained(model_path) | |
| print("Model loaded successfully!") | |
| # Define prediction function | |
| def predict(image): | |
| """Process image and generate description""" | |
| if image is None: | |
| return "Error: No image uploaded" | |
| try: | |
| # Build message with English prompt | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| {"type": "image", "image": image}, | |
| {"type": "text", "text": "Describe this wildfire scene in English. Include details about the fire intensity, affected area, and visible environmental conditions."} | |
| ] | |
| } | |
| ] | |
| # Process input | |
| text = processor.apply_chat_template( | |
| messages, | |
| tokenize=False, | |
| add_generation_prompt=True | |
| ) | |
| image_inputs, video_inputs = process_vision_info(messages) | |
| inputs = processor( | |
| text=[text], | |
| images=image_inputs, | |
| videos=video_inputs, | |
| padding=True, | |
| return_tensors="pt" | |
| ) | |
| # Ensure running on CPU | |
| inputs = inputs.to("cpu") | |
| # Generate output | |
| generated_ids = model.generate( | |
| **inputs, | |
| max_new_tokens=256, | |
| do_sample=True, | |
| temperature=0.7 | |
| ) | |
| # Decode output | |
| generated_ids_trimmed = [ | |
| out_ids[len(in_ids):] | |
| for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
| ] | |
| output_text = processor.batch_decode( | |
| generated_ids_trimmed, | |
| skip_special_tokens=True, | |
| clean_up_tokenization_spaces=False | |
| ) | |
| return output_text[0] | |
| except Exception as e: | |
| return f"Prediction failed: {str(e)}" | |
| # Gradio interface function | |
| def gradio_interface(image): | |
| """Main function for Gradio interface""" | |
| result = predict(image) | |
| return result | |
| # Create Gradio interface (all in English) | |
| interface = gr.Interface( | |
| fn=gradio_interface, | |
| inputs=gr.Image(type="pil", label="Upload Wildfire Image"), | |
| outputs=gr.Textbox(label="AI Analysis Result", lines=10), | |
| title="🔥 Wildfire Scene Analysis System", | |
| description="Upload a wildfire-related image and AI will automatically analyze and describe the fire situation in English." | |
| ) | |
| # Launch interface | |
| if __name__ == "__main__": | |
| interface.launch(share=False) |