| import os | |
| import sys | |
| sys.path.append(os.path.abspath('./modules')) | |
| # import math | |
| import tempfile | |
| import gradio | |
| import torch | |
| import spaces | |
| import numpy as np | |
| import functools | |
| import trimesh | |
| import copy | |
| # from PIL import Image | |
| from scipy.spatial.transform import Rotation | |
| from modules.pe3r.images import Images | |
| from modules.dust3r.inference import inference | |
| from modules.dust3r.image_pairs import make_pairs | |
| from modules.dust3r.utils.image import load_images #, rgb | |
| from modules.dust3r.utils.device import to_numpy | |
| from modules.dust3r.viz import add_scene_cam, CAM_COLORS, OPENGL, pts3d_to_trimesh, cat_meshes | |
| from modules.dust3r.cloud_opt import global_aligner, GlobalAlignerMode | |
| # from copy import deepcopy | |
| # import cv2 | |
| # from typing import Any, Dict, Generator,List | |
| # import matplotlib.pyplot as pl | |
| # from modules.mobilesamv2.utils.transforms import ResizeLongestSide | |
| # from modules.pe3r.models import Models | |
| import torchvision.transforms as tvf | |
| # sys.path.append(os.path.abspath('./modules/ultralytics')) | |
| # from transformers import AutoTokenizer, AutoModel, AutoProcessor, SamModel | |
| # from modules.mast3r.model import AsymmetricMASt3R | |
| # from modules.sam2.build_sam import build_sam2_video_predictor | |
| # from modules.mobilesamv2.promt_mobilesamv2 import ObjectAwareModel | |
| # from modules.mobilesamv2 import sam_model_registry | |
| # from sam2.sam2_video_predictor import SAM2VideoPredictor | |
| from modules.mast3r.model import AsymmetricMASt3R | |
| silent = False | |
| # device = 'cpu' #'cuda' if torch.cuda.is_available() else 'cpu' # # | |
| # pe3r = Models('cpu') # 'cpu' # | |
| # print(device) | |
| def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05, | |
| cam_color=None, as_pointcloud=False, | |
| transparent_cams=False): | |
| assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals) | |
| pts3d = to_numpy(pts3d) | |
| imgs = to_numpy(imgs) | |
| focals = to_numpy(focals) | |
| cams2world = to_numpy(cams2world) | |
| scene = trimesh.Scene() | |
| # full pointcloud | |
| if as_pointcloud: | |
| pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)]) | |
| col = np.concatenate([p[m] for p, m in zip(imgs, mask)]) | |
| pct = trimesh.PointCloud(pts.reshape(-1, 3), colors=col.reshape(-1, 3)) | |
| scene.add_geometry(pct) | |
| else: | |
| meshes = [] | |
| for i in range(len(imgs)): | |
| meshes.append(pts3d_to_trimesh(imgs[i], pts3d[i], mask[i])) | |
| mesh = trimesh.Trimesh(**cat_meshes(meshes)) | |
| scene.add_geometry(mesh) | |
| # add each camera | |
| for i, pose_c2w in enumerate(cams2world): | |
| if isinstance(cam_color, list): | |
| camera_edge_color = cam_color[i] | |
| else: | |
| camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)] | |
| add_scene_cam(scene, pose_c2w, camera_edge_color, | |
| None if transparent_cams else imgs[i], focals[i], | |
| imsize=imgs[i].shape[1::-1], screen_width=cam_size) | |
| rot = np.eye(4) | |
| rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix() | |
| scene.apply_transform(np.linalg.inv(cams2world[0] @ OPENGL @ rot)) | |
| outfile = os.path.join(outdir, 'scene.glb') | |
| if not silent: | |
| print('(exporting 3D scene to', outfile, ')') | |
| scene.export(file_obj=outfile) | |
| return outfile | |
| def get_3D_model_from_scene(outdir, scene, min_conf_thr=3, as_pointcloud=False, mask_sky=False, | |
| clean_depth=False, transparent_cams=False, cam_size=0.05): | |
| """ | |
| extract 3D_model (glb file) from a reconstructed scene | |
| """ | |
| if scene is None: | |
| return None | |
| # post processes | |
| if clean_depth: | |
| scene = scene.clean_pointcloud() | |
| if mask_sky: | |
| scene = scene.mask_sky() | |
| # get optimized values from scene | |
| rgbimg = scene.ori_imgs | |
| focals = scene.get_focals().cpu() | |
| cams2world = scene.get_im_poses().cpu() | |
| # 3D pointcloud from depthmap, poses and intrinsics | |
| pts3d = to_numpy(scene.get_pts3d()) | |
| scene.min_conf_thr = float(scene.conf_trf(torch.tensor(min_conf_thr))) | |
| msk = to_numpy(scene.get_masks()) | |
| return _convert_scene_output_to_glb(outdir, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud, | |
| transparent_cams=transparent_cams, cam_size=cam_size) | |
| # def mask_nms(masks, threshold=0.8): | |
| # keep = [] | |
| # mask_num = len(masks) | |
| # suppressed = np.zeros((mask_num), dtype=np.int64) | |
| # for i in range(mask_num): | |
| # if suppressed[i] == 1: | |
| # continue | |
| # keep.append(i) | |
| # for j in range(i + 1, mask_num): | |
| # if suppressed[j] == 1: | |
| # continue | |
| # intersection = (masks[i] & masks[j]).sum() | |
| # if min(intersection / masks[i].sum(), intersection / masks[j].sum()) > threshold: | |
| # suppressed[j] = 1 | |
| # return keep | |
| # def filter(masks, keep): | |
| # ret = [] | |
| # for i, m in enumerate(masks): | |
| # if i in keep: ret.append(m) | |
| # return ret | |
| # def mask_to_box(mask): | |
| # if mask.sum() == 0: | |
| # return np.array([0, 0, 0, 0]) | |
| # # Get the rows and columns where the mask is 1 | |
| # rows = np.any(mask, axis=1) | |
| # cols = np.any(mask, axis=0) | |
| # # Get top, bottom, left, right edges | |
| # top = np.argmax(rows) | |
| # bottom = len(rows) - 1 - np.argmax(np.flip(rows)) | |
| # left = np.argmax(cols) | |
| # right = len(cols) - 1 - np.argmax(np.flip(cols)) | |
| # return np.array([left, top, right, bottom]) | |
| # def box_xyxy_to_xywh(box_xyxy): | |
| # box_xywh = deepcopy(box_xyxy) | |
| # box_xywh[2] = box_xywh[2] - box_xywh[0] | |
| # box_xywh[3] = box_xywh[3] - box_xywh[1] | |
| # return box_xywh | |
| # def get_seg_img(mask, box, image): | |
| # image = image.copy() | |
| # x, y, w, h = box | |
| # # image[mask == 0] = np.array([0, 0, 0], dtype=np.uint8) | |
| # box_area = w * h | |
| # mask_area = mask.sum() | |
| # if 1 - (mask_area / box_area) < 0.2: | |
| # image[mask == 0] = np.array([0, 0, 0], dtype=np.uint8) | |
| # else: | |
| # random_values = np.random.randint(0, 255, size=image.shape, dtype=np.uint8) | |
| # image[mask == 0] = random_values[mask == 0] | |
| # seg_img = image[y:y+h, x:x+w, ...] | |
| # return seg_img | |
| # def pad_img(img): | |
| # h, w, _ = img.shape | |
| # l = max(w,h) | |
| # pad = np.zeros((l,l,3), dtype=np.uint8) # | |
| # if h > w: | |
| # pad[:,(h-w)//2:(h-w)//2 + w, :] = img | |
| # else: | |
| # pad[(w-h)//2:(w-h)//2 + h, :, :] = img | |
| # return pad | |
| # def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]: | |
| # assert len(args) > 0 and all( | |
| # len(a) == len(args[0]) for a in args | |
| # ), "Batched iteration must have inputs of all the same size." | |
| # n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0) | |
| # for b in range(n_batches): | |
| # yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args] | |
| # def slerp(u1, u2, t): | |
| # """ | |
| # Perform spherical linear interpolation (Slerp) between two unit vectors. | |
| # Args: | |
| # - u1 (torch.Tensor): First unit vector, shape (1024,) | |
| # - u2 (torch.Tensor): Second unit vector, shape (1024,) | |
| # - t (float): Interpolation parameter | |
| # Returns: | |
| # - torch.Tensor: Interpolated vector, shape (1024,) | |
| # """ | |
| # # Compute the dot product | |
| # dot_product = torch.sum(u1 * u2) | |
| # # Ensure the dot product is within the valid range [-1, 1] | |
| # dot_product = torch.clamp(dot_product, -1.0, 1.0) | |
| # # Compute the angle between the vectors | |
| # theta = torch.acos(dot_product) | |
| # # Compute the coefficients for the interpolation | |
| # sin_theta = torch.sin(theta) | |
| # if sin_theta == 0: | |
| # # Vectors are parallel, return a linear interpolation | |
| # return u1 + t * (u2 - u1) | |
| # s1 = torch.sin((1 - t) * theta) / sin_theta | |
| # s2 = torch.sin(t * theta) / sin_theta | |
| # # Perform the interpolation | |
| # return s1 * u1 + s2 * u2 | |
| # def slerp_multiple(vectors, t_values): | |
| # """ | |
| # Perform spherical linear interpolation (Slerp) for multiple vectors. | |
| # Args: | |
| # - vectors (torch.Tensor): Tensor of vectors, shape (n, 1024) | |
| # - a_values (torch.Tensor): Tensor of values corresponding to each vector, shape (n,) | |
| # Returns: | |
| # - torch.Tensor: Interpolated vector, shape (1024,) | |
| # """ | |
| # n = vectors.shape[0] | |
| # # Initialize the interpolated vector with the first vector | |
| # interpolated_vector = vectors[0] | |
| # # Perform Slerp iteratively | |
| # for i in range(1, n): | |
| # # Perform Slerp between the current interpolated vector and the next vector | |
| # t = t_values[i] / (t_values[i] + t_values[i-1]) | |
| # interpolated_vector = slerp(interpolated_vector, vectors[i], t) | |
| # return interpolated_vector | |
| # @torch.no_grad | |
| # def get_mask_from_img_sam1(yolov8, mobilesamv2, sam1_image, yolov8_image, original_size, input_size, transform): | |
| # device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| # sam_mask=[] | |
| # img_area = original_size[0] * original_size[1] | |
| # obj_results = yolov8(yolov8_image,device=device,retina_masks=False,imgsz=1024,conf=0.25,iou=0.95,verbose=False) | |
| # input_boxes1 = obj_results[0].boxes.xyxy | |
| # input_boxes1 = input_boxes1.cpu().numpy() | |
| # input_boxes1 = transform.apply_boxes(input_boxes1, original_size) | |
| # input_boxes = torch.from_numpy(input_boxes1).to(device) | |
| # # obj_results = yolov8(yolov8_image,device=device,retina_masks=False,imgsz=512,conf=0.25,iou=0.9,verbose=False) | |
| # # input_boxes2 = obj_results[0].boxes.xyxy | |
| # # input_boxes2 = input_boxes2.cpu().numpy() | |
| # # input_boxes2 = transform.apply_boxes(input_boxes2, original_size) | |
| # # input_boxes2 = torch.from_numpy(input_boxes2).to(device) | |
| # # input_boxes = torch.cat((input_boxes1, input_boxes2), dim=0) | |
| # input_image = mobilesamv2.preprocess(sam1_image) | |
| # image_embedding = mobilesamv2.image_encoder(input_image)['last_hidden_state'] | |
| # image_embedding=torch.repeat_interleave(image_embedding, 320, dim=0) | |
| # prompt_embedding=mobilesamv2.prompt_encoder.get_dense_pe() | |
| # prompt_embedding=torch.repeat_interleave(prompt_embedding, 320, dim=0) | |
| # for (boxes,) in batch_iterator(320, input_boxes): | |
| # with torch.no_grad(): | |
| # image_embedding=image_embedding[0:boxes.shape[0],:,:,:] | |
| # prompt_embedding=prompt_embedding[0:boxes.shape[0],:,:,:] | |
| # sparse_embeddings, dense_embeddings = mobilesamv2.prompt_encoder( | |
| # points=None, | |
| # boxes=boxes, | |
| # masks=None,) | |
| # low_res_masks, _ = mobilesamv2.mask_decoder( | |
| # image_embeddings=image_embedding, | |
| # image_pe=prompt_embedding, | |
| # sparse_prompt_embeddings=sparse_embeddings, | |
| # dense_prompt_embeddings=dense_embeddings, | |
| # multimask_output=False, | |
| # simple_type=True, | |
| # ) | |
| # low_res_masks=mobilesamv2.postprocess_masks(low_res_masks, input_size, original_size) | |
| # sam_mask_pre = (low_res_masks > mobilesamv2.mask_threshold) | |
| # for mask in sam_mask_pre: | |
| # if mask.sum() / img_area > 0.002: | |
| # sam_mask.append(mask.squeeze(1)) | |
| # sam_mask=torch.cat(sam_mask) | |
| # sorted_sam_mask = sorted(sam_mask, key=(lambda x: x.sum()), reverse=True) | |
| # keep = mask_nms(sorted_sam_mask) | |
| # ret_mask = filter(sorted_sam_mask, keep) | |
| # return ret_mask | |
| # @torch.no_grad | |
| # def get_cog_feats(images, sam2, siglip, siglip_processor, yolov8, mobilesamv2): | |
| # device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| # cog_seg_maps = [] | |
| # rev_cog_seg_maps = [] | |
| # inference_state = sam2.init_state(images=images.sam2_images, video_height=images.sam2_video_size[0], video_width=images.sam2_video_size[1]) | |
| # mask_num = 0 | |
| # sam1_images = images.sam1_images | |
| # sam1_images_size = images.sam1_images_size | |
| # np_images = images.np_images | |
| # np_images_size = images.np_images_size | |
| # sam1_masks = get_mask_from_img_sam1(yolov8, mobilesamv2, sam1_images[0], np_images[0], np_images_size[0], sam1_images_size[0], images.sam1_transform) | |
| # for mask in sam1_masks: | |
| # _, _, _ = sam2.add_new_mask( | |
| # inference_state=inference_state, | |
| # frame_idx=0, | |
| # obj_id=mask_num, | |
| # mask=mask, | |
| # ) | |
| # mask_num += 1 | |
| # video_segments = {} # video_segments contains the per-frame segmentation results | |
| # for out_frame_idx, out_obj_ids, out_mask_logits in sam2.propagate_in_video(inference_state): | |
| # sam2_masks = (out_mask_logits > 0.0).squeeze(1) | |
| # video_segments[out_frame_idx] = { | |
| # out_obj_id: sam2_masks[i].cpu().numpy() | |
| # for i, out_obj_id in enumerate(out_obj_ids) | |
| # } | |
| # if out_frame_idx == 0: | |
| # continue | |
| # sam1_masks = get_mask_from_img_sam1(yolov8, mobilesamv2, sam1_images[out_frame_idx], np_images[out_frame_idx], np_images_size[out_frame_idx], sam1_images_size[out_frame_idx], images.sam1_transform) | |
| # for sam1_mask in sam1_masks: | |
| # flg = 1 | |
| # for sam2_mask in sam2_masks: | |
| # # print(sam1_mask.shape, sam2_mask.shape) | |
| # area1 = sam1_mask.sum() | |
| # area2 = sam2_mask.sum() | |
| # intersection = (sam1_mask & sam2_mask).sum() | |
| # if min(intersection / area1, intersection / area2) > 0.25: | |
| # flg = 0 | |
| # break | |
| # if flg: | |
| # video_segments[out_frame_idx][mask_num] = sam1_mask.cpu().numpy() | |
| # mask_num += 1 | |
| # multi_view_clip_feats = torch.zeros((mask_num+1, 1024)) | |
| # multi_view_clip_feats_map = {} | |
| # multi_view_clip_area_map = {} | |
| # for now_frame in range(0, len(video_segments), 1): | |
| # image = np_images[now_frame] | |
| # seg_img_list = [] | |
| # out_obj_id_list = [] | |
| # out_obj_mask_list = [] | |
| # out_obj_area_list = [] | |
| # # NOTE: background: -1 | |
| # rev_seg_map = -np.ones(image.shape[:2], dtype=np.int64) | |
| # sorted_dict_items = sorted(video_segments[now_frame].items(), key=lambda x: np.count_nonzero(x[1]), reverse=False) | |
| # for out_obj_id, mask in sorted_dict_items: | |
| # if mask.sum() == 0: | |
| # continue | |
| # rev_seg_map[mask] = out_obj_id | |
| # rev_cog_seg_maps.append(rev_seg_map) | |
| # seg_map = -np.ones(image.shape[:2], dtype=np.int64) | |
| # sorted_dict_items = sorted(video_segments[now_frame].items(), key=lambda x: np.count_nonzero(x[1]), reverse=True) | |
| # for out_obj_id, mask in sorted_dict_items: | |
| # if mask.sum() == 0: | |
| # continue | |
| # box = np.int32(box_xyxy_to_xywh(mask_to_box(mask))) | |
| # if box[2] == 0 and box[3] == 0: | |
| # continue | |
| # # print(box) | |
| # seg_img = get_seg_img(mask, box, image) | |
| # pad_seg_img = cv2.resize(pad_img(seg_img), (256,256)) | |
| # seg_img_list.append(pad_seg_img) | |
| # seg_map[mask] = out_obj_id | |
| # out_obj_id_list.append(out_obj_id) | |
| # out_obj_area_list.append(np.count_nonzero(mask)) | |
| # out_obj_mask_list.append(mask) | |
| # if len(seg_img_list) == 0: | |
| # cog_seg_maps.append(seg_map) | |
| # continue | |
| # seg_imgs = np.stack(seg_img_list, axis=0) # b,H,W,3 | |
| # seg_imgs = torch.from_numpy(seg_imgs).permute(0,3,1,2) # / 255.0 | |
| # inputs = siglip_processor(images=seg_imgs, return_tensors="pt") | |
| # inputs = {key: value.to(device) for key, value in inputs.items()} | |
| # image_features = siglip.get_image_features(**inputs) | |
| # image_features = image_features / image_features.norm(dim=-1, keepdim=True) | |
| # image_features = image_features.detach().cpu() | |
| # for i in range(len(out_obj_mask_list)): | |
| # for j in range(i + 1, len(out_obj_mask_list)): | |
| # mask1 = out_obj_mask_list[i] | |
| # mask2 = out_obj_mask_list[j] | |
| # intersection = np.logical_and(mask1, mask2).sum() | |
| # area1 = out_obj_area_list[i] | |
| # area2 = out_obj_area_list[j] | |
| # if min(intersection / area1, intersection / area2) > 0.025: | |
| # conf1 = area1 / (area1 + area2) | |
| # # conf2 = area2 / (area1 + area2) | |
| # image_features[j] = slerp(image_features[j], image_features[i], conf1) | |
| # for i, clip_feat in enumerate(image_features): | |
| # id = out_obj_id_list[i] | |
| # if id in multi_view_clip_feats_map.keys(): | |
| # multi_view_clip_feats_map[id].append(clip_feat) | |
| # multi_view_clip_area_map[id].append(out_obj_area_list[i]) | |
| # else: | |
| # multi_view_clip_feats_map[id] = [clip_feat] | |
| # multi_view_clip_area_map[id] = [out_obj_area_list[i]] | |
| # cog_seg_maps.append(seg_map) | |
| # del image_features | |
| # for i in range(mask_num): | |
| # if i in multi_view_clip_feats_map.keys(): | |
| # clip_feats = multi_view_clip_feats_map[i] | |
| # mask_area = multi_view_clip_area_map[i] | |
| # multi_view_clip_feats[i] = slerp_multiple(torch.stack(clip_feats), np.stack(mask_area)) | |
| # else: | |
| # multi_view_clip_feats[i] = torch.zeros((1024)) | |
| # multi_view_clip_feats[mask_num] = torch.zeros((1024)) | |
| # return cog_seg_maps, rev_cog_seg_maps, multi_view_clip_feats | |
| #(duration=30) | |
| def get_reconstructed_scene(outdir, filelist, schedule='linear', niter=300, min_conf_thr=3.0, | |
| as_pointcloud=True, mask_sky=False, clean_depth=True, transparent_cams=True, cam_size=0.05, | |
| scenegraph_type='complete', winsize=1, refid=0): | |
| """ | |
| from a list of images, run dust3r inference, global aligner. | |
| then run get_3D_model_from_scene | |
| """ | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| MAST3R_CKP = 'naver/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric' | |
| mast3r = AsymmetricMASt3R.from_pretrained(MAST3R_CKP).to(device) | |
| # sam2 = SAM2VideoPredictor.from_pretrained('facebook/sam2.1-hiera-large', device=device) | |
| # siglip = AutoModel.from_pretrained("google/siglip-large-patch16-256", device_map=device) | |
| # siglip_processor = AutoProcessor.from_pretrained("google/siglip-large-patch16-256") | |
| # SAM1_DECODER_CKP = './checkpoints/Prompt_guided_Mask_Decoder.pt' | |
| # mobilesamv2 = sam_model_registry['sam_vit_h'](None) | |
| # sam1 = SamModel.from_pretrained('facebook/sam-vit-huge') | |
| # image_encoder = sam1.vision_encoder | |
| # prompt_encoder, mask_decoder = sam_model_registry['prompt_guided_decoder'](SAM1_DECODER_CKP) | |
| # mobilesamv2.prompt_encoder = prompt_encoder | |
| # mobilesamv2.mask_decoder = mask_decoder | |
| # mobilesamv2.image_encoder=image_encoder | |
| # mobilesamv2.to(device=device) | |
| # mobilesamv2.eval() | |
| # YOLO8_CKP='./checkpoints/ObjectAwareModel.pt' | |
| # yolov8 = ObjectAwareModel(YOLO8_CKP) | |
| if len(filelist) < 2: | |
| raise gradio.Error("Please input at least 2 images.") | |
| images = Images(filelist=filelist, device=device) | |
| # try: | |
| # cog_seg_maps, rev_cog_seg_maps, cog_feats = get_cog_feats(images, sam2, siglip, siglip_processor, yolov8, mobilesamv2) | |
| # imgs = load_images(images, rev_cog_seg_maps, size=512, verbose=not silent) | |
| # except Exception as e: | |
| rev_cog_seg_maps = [] | |
| for tmp_img in images.np_images: | |
| rev_seg_map = -np.ones(tmp_img.shape[:2], dtype=np.int64) | |
| rev_cog_seg_maps.append(rev_seg_map) | |
| cog_seg_maps = rev_cog_seg_maps | |
| cog_feats = torch.zeros((1, 1024)) | |
| imgs = load_images(images, rev_cog_seg_maps, size=512, verbose=not silent) | |
| if len(imgs) == 1: | |
| imgs = [imgs[0], copy.deepcopy(imgs[0])] | |
| imgs[1]['idx'] = 1 | |
| if scenegraph_type == "swin": | |
| scenegraph_type = scenegraph_type + "-" + str(winsize) | |
| elif scenegraph_type == "oneref": | |
| scenegraph_type = scenegraph_type + "-" + str(refid) | |
| pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True) | |
| output = inference(pairs, mast3r, device, batch_size=1, verbose=not silent) | |
| mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer | |
| scene_1 = global_aligner(output, cog_seg_maps, rev_cog_seg_maps, cog_feats, device=device, mode=mode, verbose=not silent) | |
| lr = 0.01 | |
| # if mode == GlobalAlignerMode.PointCloudOptimizer: | |
| loss = scene_1.compute_global_alignment(tune_flg=True, init='mst', niter=niter, schedule=schedule, lr=lr) | |
| try: | |
| ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) | |
| for i in range(len(imgs)): | |
| # print(imgs[i]['img'].shape, scene.imgs[i].shape, ImgNorm(scene.imgs[i])[None]) | |
| imgs[i]['img'] = ImgNorm(scene_1.imgs[i])[None] | |
| pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True) | |
| output = inference(pairs, mast3r, device, batch_size=1, verbose=not silent) | |
| mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer | |
| scene = global_aligner(output, cog_seg_maps, rev_cog_seg_maps, cog_feats, device=device, mode=mode, verbose=not silent) | |
| ori_imgs = scene.ori_imgs | |
| lr = 0.01 | |
| # if mode == GlobalAlignerMode.PointCloudOptimizer: | |
| loss = scene.compute_global_alignment(tune_flg=False, init='mst', niter=niter, schedule=schedule, lr=lr) | |
| except Exception as e: | |
| scene = scene_1 | |
| scene.imgs = ori_imgs | |
| scene.ori_imgs = ori_imgs | |
| print(e) | |
| outfile = get_3D_model_from_scene(outdir, scene, min_conf_thr, as_pointcloud, mask_sky, | |
| clean_depth, transparent_cams, cam_size) | |
| # scene.to('cpu') | |
| # print(scene) | |
| # print(scene.imgs) | |
| # print(scene.cogs) scene, | |
| torch.cuda.empty_cache() | |
| return outfile | |
| # @spaces.GPU #(duration=30) | |
| # def get_3D_object_from_scene(outdir, text, threshold, scene, min_conf_thr, as_pointcloud, | |
| # mask_sky, clean_depth, transparent_cams, cam_size): | |
| # device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| # siglip_tokenizer = AutoTokenizer.from_pretrained("google/siglip-large-patch16-256") | |
| # siglip = AutoModel.from_pretrained("google/siglip-large-patch16-256", device_map=device) | |
| # texts = [text] | |
| # inputs = siglip_tokenizer(text=texts, padding="max_length", return_tensors="pt") | |
| # inputs = {key: value.to(device) for key, value in inputs.items()} | |
| # with torch.no_grad(): | |
| # text_feats =siglip.get_text_features(**inputs) | |
| # text_feats = text_feats / text_feats.norm(dim=-1, keepdim=True) | |
| # scene.render_image(text_feats, threshold) | |
| # scene.ori_imgs = scene.rendered_imgs | |
| # outfile = get_3D_model_from_scene(outdir, scene, min_conf_thr, as_pointcloud, mask_sky, | |
| # clean_depth, transparent_cams, cam_size) | |
| # return outfile | |
| tmpdirname = tempfile.mkdtemp(suffix='pe3r_gradio_demo') | |
| recon_fun = functools.partial(get_reconstructed_scene, tmpdirname) | |
| # model_from_scene_fun = functools.partial(get_3D_model_from_scene, tmpdirname) | |
| # get_3D_object_from_scene_fun = functools.partial(get_3D_object_from_scene, tmpdirname) | |
| with gradio.Blocks(css=""".gradio-container {margin: 0 !important; min-width: 100%};""", title="PE3R Demo") as demo: | |
| # scene state is save so that you can change conf_thr, cam_size... without rerunning the inference | |
| # scene = gradio.State(None) | |
| gradio.HTML('<h2 style="text-align: center;">PE3R Demo</h2>') | |
| with gradio.Column(): | |
| inputfiles = gradio.File(file_count="multiple") | |
| run_btn = gradio.Button("Reconstruct") | |
| with gradio.Row(): | |
| text_input = gradio.Textbox(label="Query Text") | |
| threshold = gradio.Slider(label="Threshold", value=0.85, minimum=0.0, maximum=1.0, step=0.01) | |
| find_btn = gradio.Button("Find") | |
| outmodel = gradio.Model3D() | |
| # events | |
| run_btn.click(fn=recon_fun, | |
| inputs=[inputfiles], | |
| outputs=[outmodel]) # , outgallery, scene, | |
| # find_btn.click(fn=get_3D_object_from_scene_fun, | |
| # inputs=[text_input, threshold, scene, min_conf_thr, as_pointcloud, mask_sky, | |
| # clean_depth, transparent_cams, cam_size], | |
| # outputs=outmodel) | |
| demo.launch(show_error=True, share=None, server_name=None, server_port=None) | |