ViBERTa / app.py
Sathyam
Update app.py
5489fcb unverified
raw
history blame contribute delete
855 Bytes
import streamlit as st
from transformers import pipeline
# Load the model
pipe = pipeline("text-classification", model="iSathyam03/McD_Reviews_Sentiment_Analysis")
# Set up Streamlit app
st.title("McDonald's Review Sentiment Analysis")
# Create text input box for user to input review
review_text = st.text_area("Enter McDonald's Review:")
# Check if review text is not empty and run the sentiment analysis
if review_text:
# Predict sentiment
sentiment = pipe(review_text)
# Extract the label and score
sentiment_label = sentiment[0]['label']
sentiment_score = sentiment[0]['score']
# Display the result
st.write(f"Sentiment: {sentiment_label}")
st.write(f"Confidence: {sentiment_score:.2f}")
# Run the app
if __name__ == "__main__":
st.write("Type a review in the box above to get sentiment analysis.")