Spaces:
Running
on
Zero
Running
on
Zero
File size: 28,846 Bytes
62432f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 |
try:
import spaces
GPU = spaces.GPU
print("spaces GPU is available")
except ImportError:
def GPU(func):
return func
import os
import subprocess
try:
import gsplat
except ImportError:
def install_cuda_toolkit():
# CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run"
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_550.54.14_linux.run"
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
os.environ["CUDA_HOME"],
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
)
# Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
os.environ["TORCH_CUDA_ARCH_LIST"] = "9.0+PTX"
print("Successfully installed CUDA toolkit at: ", os.environ["CUDA_HOME"])
subprocess.call('rm /usr/bin/gcc', shell=True)
subprocess.call('rm /usr/bin/g++', shell=True)
subprocess.call('ln -s /usr/bin/gcc-11 /usr/bin/gcc', shell=True)
subprocess.call('ln -s /usr/bin/g++-11 /usr/bin/g++', shell=True)
subprocess.call('gcc --version', shell=True)
subprocess.call('g++ --version', shell=True)
install_cuda_toolkit()
os.environ["TORCH_CUDA_ARCH_LIST"] = "9.0+PTX"
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] = "/usr/local/cuda/bin/:" + os.environ["PATH"]
subprocess.run('pip install git+https://github.com/nerfstudio-project/gsplat.git@32f2a54d21c7ecb135320bb02b136b7407ae5712',
env={'CUDA_HOME': "/usr/local/cuda", "TORCH_CUDA_ARCH_LIST": "9.0+PTX", "PATH": "/usr/local/cuda/bin/:" + os.environ["PATH"]}, shell=True)
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
import gradio as gr
import base64
import io
from PIL import Image
import torch
import numpy as np
import os
import argparse
import imageio
import json
import time
import tempfile
import shutil
from huggingface_hub import hf_hub_download
import einops
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import imageio
from models import *
from utils import *
from transformers import T5TokenizerFast, UMT5EncoderModel
from diffusers import FlowMatchEulerDiscreteScheduler
os.environ["TOKENIZERS_PARALLELISM"] = "false"
class MyFlowMatchEulerDiscreteScheduler(FlowMatchEulerDiscreteScheduler):
def index_for_timestep(self, timestep, schedule_timesteps=None):
if schedule_timesteps is None:
schedule_timesteps = self.timesteps
return torch.argmin(
(timestep - schedule_timesteps.to(timestep.device)).abs(), dim=0).item()
class GenerationSystem(nn.Module):
def __init__(self, ckpt_path=None, device="cuda:0", offload_t5=False, offload_vae=False):
super().__init__()
self.device = device
self.offload_t5 = offload_t5
self.offload_vae = offload_vae
self.latent_dim = 48
self.temporal_downsample_factor = 4
self.spatial_downsample_factor = 16
self.feat_dim = 1024
self.latent_patch_size = 2
self.denoising_steps = [0, 250, 500, 750]
model_id = "Wan-AI/Wan2.2-TI2V-5B-Diffusers"
self.vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float).eval()
from models.autoencoder_kl_wan import WanCausalConv3d
with torch.no_grad():
for name, module in self.vae.named_modules():
if isinstance(module, WanCausalConv3d):
time_pad = module._padding[4]
module.padding = (0, module._padding[2], module._padding[0])
module._padding = (0, 0, 0, 0, 0, 0)
module.weight = torch.nn.Parameter(module.weight[:, :, time_pad:].clone())
self.vae.requires_grad_(False)
self.register_buffer('latents_mean', torch.tensor(self.vae.config.latents_mean).float().view(1, self.vae.config.z_dim, 1, 1, 1).to(self.device))
self.register_buffer('latents_std', torch.tensor(self.vae.config.latents_std).float().view(1, self.vae.config.z_dim, 1, 1, 1).to(self.device))
self.tokenizer = T5TokenizerFast.from_pretrained(model_id, subfolder="tokenizer")
self.text_encoder = UMT5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.float32).eval().requires_grad_(False).to(self.device if not self.offload_t5 else "cpu")
self.transformer = WanTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.float32).train().requires_grad_(False)
self.transformer.patch_embedding.weight = nn.Parameter(F.pad(self.transformer.patch_embedding.weight, (0, 0, 0, 0, 0, 0, 0, 6 + self.latent_dim)))
# self.transformer.rope.freqs_f[:] = self.transformer.rope.freqs_f[:1]
weight = self.transformer.proj_out.weight.reshape(self.latent_patch_size ** 2, self.latent_dim, self.transformer.proj_out.weight.shape[1])
bias = self.transformer.proj_out.bias.reshape(self.latent_patch_size ** 2, self.latent_dim)
extra_weight = torch.randn(self.latent_patch_size ** 2, self.feat_dim, self.transformer.proj_out.weight.shape[1]) * 0.02
extra_bias = torch.zeros(self.latent_patch_size ** 2, self.feat_dim)
self.transformer.proj_out.weight = nn.Parameter(torch.cat([weight, extra_weight], dim=1).flatten(0, 1).detach().clone())
self.transformer.proj_out.bias = nn.Parameter(torch.cat([bias, extra_bias], dim=1).flatten(0, 1).detach().clone())
self.recon_decoder = WANDecoderPixelAligned3DGSReconstructionModel(self.vae, self.feat_dim, use_render_checkpointing=True, use_network_checkpointing=False).train().requires_grad_(False).to(self.device)
self.scheduler = MyFlowMatchEulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler", shift=3)
self.register_buffer('timesteps', self.scheduler.timesteps.clone().to(self.device))
self.transformer.disable_gradient_checkpointing()
self.transformer.gradient_checkpointing = False
self.add_feedback_for_transformer()
if ckpt_path is not None:
state_dict = torch.load(ckpt_path, map_location="cpu", weights_only=False)
self.transformer.load_state_dict(state_dict["transformer"])
self.recon_decoder.load_state_dict(state_dict["recon_decoder"])
print(f"Loaded {ckpt_path}.")
from quant import FluxFp8GeMMProcessor
FluxFp8GeMMProcessor(self.transformer)
del self.vae.post_quant_conv, self.vae.decoder
self.vae.to(self.device if not self.offload_vae else "cpu")
self.vae.to(torch.bfloat16)
self.transformer.to(self.device)
def latent_scale_fn(self, x):
return (x - self.latents_mean) / self.latents_std
def latent_unscale_fn(self, x):
return x * self.latents_std + self.latents_mean
def add_feedback_for_transformer(self):
self.use_feedback = True
self.transformer.patch_embedding.weight = nn.Parameter(F.pad(self.transformer.patch_embedding.weight, (0, 0, 0, 0, 0, 0, 0, self.feat_dim + self.latent_dim)))
def encode_text(self, texts):
max_sequence_length = 512
text_inputs = self.tokenizer(
texts,
padding="max_length",
max_length=max_sequence_length,
truncation=True,
add_special_tokens=True,
return_attention_mask=True,
return_tensors="pt",
)
if getattr(self, "offload_t5", False):
text_input_ids = text_inputs.input_ids.to("cpu")
mask = text_inputs.attention_mask.to("cpu")
else:
text_input_ids = text_inputs.input_ids.to(self.device)
mask = text_inputs.attention_mask.to(self.device)
seq_lens = mask.gt(0).sum(dim=1).long()
if getattr(self, "offload_t5", False):
with torch.no_grad():
text_embeds = self.text_encoder(text_input_ids, mask).last_hidden_state.to(self.device)
else:
text_embeds = self.text_encoder(text_input_ids, mask).last_hidden_state
text_embeds = [u[:v] for u, v in zip(text_embeds, seq_lens)]
text_embeds = torch.stack(
[torch.cat([u, u.new_zeros(max_sequence_length - u.size(0), u.size(1))]) for u in text_embeds], dim=0
)
return text_embeds.float()
def forward_generator(self, noisy_latents, raymaps, condition_latents, t, text_embeds, cameras, render_cameras, image_height, image_width, need_3d_mode=True):
out = self.transformer(
hidden_states=torch.cat([noisy_latents, raymaps, condition_latents], dim=1),
timestep=t,
encoder_hidden_states=text_embeds,
return_dict=False,
)[0]
v_pred, feats = out.split([self.latent_dim, self.feat_dim], dim=1)
sigma = torch.stack([self.scheduler.sigmas[self.scheduler.index_for_timestep(_t)] for _t in t.unbind(0)], dim=0).to(self.device)
latents_pred_2d = noisy_latents - sigma * v_pred
if need_3d_mode:
scene_params = self.recon_decoder(
einops.rearrange(feats, 'B C T H W -> (B T) C H W').unsqueeze(2),
einops.rearrange(self.latent_unscale_fn(latents_pred_2d.detach()), 'B C T H W -> (B T) C H W').unsqueeze(2),
cameras
).flatten(1, -2)
images_pred, _ = self.recon_decoder.render(scene_params.unbind(0), render_cameras, image_height, image_width, bg_mode="white")
latents_pred_3d = einops.rearrange(self.latent_scale_fn(self.vae.encode(
einops.rearrange(images_pred, 'B T C H W -> (B T) C H W', T=images_pred.shape[1]).unsqueeze(2).to(self.device if not self.offload_vae else "cpu").float()
).latent_dist.sample().to(self.device)).squeeze(2), '(B T) C H W -> B C T H W', T=images_pred.shape[1]).to(noisy_latents.dtype)
return {
'2d': latents_pred_2d,
'3d': latents_pred_3d if need_3d_mode else None,
'rgb_3d': images_pred if need_3d_mode else None,
'scene': scene_params if need_3d_mode else None,
'feat': feats
}
@torch.no_grad()
def generate(self, cameras, n_frame, image=None, text="", image_index=0, image_height=480, image_width=704, video_output_path=None):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.vae.to(self.device)
self.text_encoder.to(self.device if not self.offload_t5 else "cpu")
self.transformer.to(self.device)
self.recon_decoder.to(self.device)
self.timesteps = self.timesteps.to(self.device)
self.latents_mean = self.latents_mean.to(self.device)
self.latents_std = self.latents_std.to(self.device)
with torch.amp.autocast(dtype=torch.bfloat16, device_type="cuda"):
batch_size = 1
cameras = cameras.to(self.device).unsqueeze(0)
if cameras.shape[1] != n_frame:
render_cameras = cameras.clone()
cameras = sample_from_dense_cameras(cameras.squeeze(0), torch.linspace(0, 1, n_frame, device=self.device)).unsqueeze(0)
else:
render_cameras = cameras
cameras, ref_w2c, T_norm = normalize_cameras(cameras, return_meta=True, n_frame=None)
render_cameras = normalize_cameras(render_cameras, ref_w2c=ref_w2c, T_norm=T_norm, n_frame=None)
text = "[Static] " + text
text_embeds = self.encode_text([text])
# neg_text_embeds = self.encode_text([""]).repeat(batch_size, 1, 1)
masks = torch.zeros(batch_size, n_frame, device=self.device)
condition_latents = torch.zeros(batch_size, self.latent_dim, n_frame, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor, device=self.device)
if image is not None:
image = image.to(self.device)
latent = self.latent_scale_fn(self.vae.encode(
image.unsqueeze(0).unsqueeze(2).to(self.device if not self.offload_vae else "cpu").float()
).latent_dist.sample().to(self.device)).squeeze(2)
masks[:, image_index] = 1
condition_latents[:, :, image_index] = latent
raymaps = create_raymaps(cameras, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor)
raymaps = einops.rearrange(raymaps, 'B T H W C -> B C T H W', T=n_frame)
noise = torch.randn(batch_size, self.latent_dim, n_frame, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor, device=self.device)
noisy_latents = noise
torch.cuda.empty_cache()
if self.use_feedback:
prev_latents_pred = torch.zeros(batch_size, self.latent_dim, n_frame, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor, device=self.device)
prev_feats = torch.zeros(batch_size, self.feat_dim, n_frame, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor, device=self.device)
for i in range(len(self.denoising_steps)):
t_ids = torch.full((noisy_latents.shape[0],), self.denoising_steps[i], device=self.device)
t = self.timesteps[t_ids]
if self.use_feedback:
_condition_latents = torch.cat([condition_latents, prev_feats, prev_latents_pred], dim=1)
else:
_condition_latents = condition_latents
if i < len(self.denoising_steps) - 1:
out = self.forward_generator(noisy_latents, raymaps, _condition_latents, t, text_embeds, cameras, cameras, image_height, image_width, need_3d_mode=True)
latents_pred = out["3d"]
if self.use_feedback:
prev_latents_pred = latents_pred
prev_feats = out['feat']
noisy_latents = self.scheduler.scale_noise(latents_pred, self.timesteps[torch.full((noisy_latents.shape[0],), self.denoising_steps[i + 1], device=self.device)], torch.randn_like(noise))
else:
out = self.transformer(
hidden_states=torch.cat([noisy_latents, raymaps, _condition_latents], dim=1),
timestep=t,
encoder_hidden_states=text_embeds,
return_dict=False,
)[0]
v_pred, feats = out.split([self.latent_dim, self.feat_dim], dim=1)
sigma = torch.stack([self.scheduler.sigmas[self.scheduler.index_for_timestep(_t)] for _t in t.unbind(0)], dim=0).to(self.device)
latents_pred = noisy_latents - sigma * v_pred
scene_params = self.recon_decoder(
einops.rearrange(feats, 'B C T H W -> (B T) C H W').unsqueeze(2),
einops.rearrange(self.latent_unscale_fn(latents_pred.detach()), 'B C T H W -> (B T) C H W').unsqueeze(2),
cameras
).flatten(1, -2)
if video_output_path is not None:
interpolated_images_pred, _ = self.recon_decoder.render(scene_params.unbind(0), render_cameras, image_height, image_width, bg_mode="white")
interpolated_images_pred = einops.rearrange(interpolated_images_pred[0].clamp(-1, 1).add(1).div(2), 'T C H W -> T H W C')
interpolated_images_pred = [torch.cat([img], dim=1).detach().cpu().mul(255).numpy().astype(np.uint8) for i, img in enumerate(interpolated_images_pred.unbind(0))]
imageio.mimwrite(video_output_path, interpolated_images_pred, fps=15, quality=8, macro_block_size=1)
scene_params = scene_params[0]
scene_params = scene_params.detach().cpu()
return scene_params, ref_w2c, T_norm
@GPU
def process_generation_request(data, generation_system, cache_dir):
"""
Process the generation request with the same logic as Flask version
"""
try:
image_prompt = data.get('image_prompt', None)
text_prompt = data.get('text_prompt', "")
cameras = data.get('cameras')
resolution = data.get('resolution')
image_index = data.get('image_index', 0)
n_frame, image_height, image_width = resolution
if not image_prompt and text_prompt == "":
return {'error': 'No Prompts provided'}
if image_prompt:
# image_prompt可以是路径和base64
if os.path.exists(image_prompt):
image_prompt = Image.open(image_prompt)
else:
# image_prompt 可能是 "data:image/png;base64,...."
if ',' in image_prompt:
image_prompt = image_prompt.split(',', 1)[1]
try:
image_bytes = base64.b64decode(image_prompt)
image_prompt = Image.open(io.BytesIO(image_bytes))
except Exception as img_e:
return {'error': f'Image decode error: {str(img_e)}'}
image = image_prompt.convert('RGB')
w, h = image.size
# center crop
if image_height / h > image_width / w:
scale = image_height / h
else:
scale = image_width / w
new_h = int(image_height / scale)
new_w = int(image_width / scale)
image = image.crop(((w - new_w) // 2, (h - new_h) // 2,
new_w + (w - new_w) // 2, new_h + (h - new_h) // 2)).resize((image_width, image_height))
for camera in cameras:
camera['fx'] = camera['fx'] * scale
camera['fy'] = camera['fy'] * scale
camera['cx'] = (camera['cx'] - (w - new_w) // 2) * scale
camera['cy'] = (camera['cy'] - (h - new_h) // 2) * scale
image = torch.from_numpy(np.array(image)).float().permute(2, 0, 1) / 255.0 * 2 - 1
else:
image = None
cameras = torch.stack([
torch.from_numpy(np.array([camera['quaternion'][0], camera['quaternion'][1], camera['quaternion'][2], camera['quaternion'][3], camera['position'][0], camera['position'][1], camera['position'][2], camera['fx'] / image_width, camera['fy'] / image_height, camera['cx'] / image_width, camera['cy'] / image_height], dtype=np.float32))
for camera in cameras
], dim=0)
file_id = str(int(time.time() * 1000))
start_time = time.time()
scene_params, ref_w2c, T_norm = generation_system.generate(cameras, n_frame, image, text_prompt, image_index, image_height, image_width, video_output_path=os.path.join(cache_dir, f'{file_id}.mp4'))
end_time = time.time()
print(f'生成时间: {end_time - start_time} 秒')
with open(os.path.join(cache_dir, f'{file_id}.json'), 'w') as f:
json.dump(data, f)
splat_path = os.path.join(cache_dir, f'{file_id}.ply')
export_ply_for_gaussians(splat_path, scene_params, opacity_threshold=0.001, T_norm=T_norm)
if not os.path.exists(splat_path):
return {'error': f'{splat_path} not found'}
file_size = os.path.getsize(splat_path)
response_data = {
'success': True,
'file_id': file_id,
'file_path': splat_path,
'file_size': file_size,
'download_url': f'/download/{file_id}',
'generation_time': end_time - start_time,
}
return response_data
except Exception as e:
return {'error': f'Processing error: {str(e)}'}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--port', type=int, default=7860)
parser.add_argument("--ckpt", default=None)
parser.add_argument("--cache_dir", type=str, default=None)
parser.add_argument("--offload_t5", type=bool, default=False)
parser.add_argument("--max_concurrent", type=int, default=1, help="Maximum concurrent generation tasks")
args, _ = parser.parse_known_args()
# Ensure model.ckpt exists, download if not present
if args.ckpt is None:
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
ckpt_path = os.path.join(HUGGINGFACE_HUB_CACHE, "models--imlixinyang--FlashWorld", "snapshots", "6a8e88c6f88678ac098e4c82675f0aee555d6e5d", "model.ckpt")
if not os.path.exists(ckpt_path):
hf_hub_download(repo_id="imlixinyang/FlashWorld", filename="model.ckpt", local_dir_use_symlinks=False)
else:
ckpt_path = args.ckpt
if args.cache_dir is None or args.cache_dir == "":
GRADIO_TEMP_DIR = tempfile.gettempdir()
cache_dir = os.path.join(GRADIO_TEMP_DIR, "flashworld_gradio")
else:
cache_dir = args.cache_dir
# Create cache directory
os.makedirs(cache_dir, exist_ok=True)
# Initialize GenerationSystem
device = torch.device("cpu")
generation_system = GenerationSystem(ckpt_path=ckpt_path, device=device)
# Create Gradio interface
with gr.Blocks(title="FlashWorld Backend") as demo:
gr.Markdown("# FlashWorld Generation Backend")
gr.Markdown("This backend processes JSON requests for 3D scene generation.")
with gr.Row():
with gr.Column():
json_input = gr.Textbox(
label="JSON Input",
placeholder="Enter JSON request here...",
lines=10,
value='{"image_prompt": null, "text_prompt": "A beautiful landscape", "cameras": [...], "resolution": [16, 480, 704], "image_index": 0}'
)
generate_btn = gr.Button("Generate", variant="primary")
with gr.Column():
json_output = gr.Textbox(
label="JSON Output",
lines=10,
interactive=False
)
# File download section
gr.Markdown("## File Download")
with gr.Row():
file_id_input = gr.Textbox(
label="File ID",
placeholder="Enter file ID to download..."
)
download_btn = gr.Button("Download PLY File")
download_output = gr.File(label="Downloaded File")
def gradio_generate(json_input):
"""
Gradio interface function that processes JSON input and returns JSON output
"""
try:
# Parse JSON input
if isinstance(json_input, str):
data = json.loads(json_input)
else:
data = json_input
# Process the request
result = process_generation_request(data, generation_system, cache_dir)
# Return JSON response
return json.dumps(result, indent=2)
except Exception as e:
error_response = {'error': f'JSON processing error: {str(e)}'}
return json.dumps(error_response, indent=2)
def download_file(file_id):
"""
Download generated PLY file
"""
file_path = os.path.join(cache_dir, f'{file_id}.ply')
if not os.path.exists(file_path):
return None
return file_path
# Event handlers
generate_btn.click(
fn=gradio_generate,
inputs=[json_input],
outputs=[json_output]
)
download_btn.click(
fn=download_file,
inputs=[file_id_input],
outputs=[download_output]
)
# Example JSON format
gr.Markdown("""
## Example JSON Input Format:
```json
{
"image_prompt": null,
"text_prompt": "A beautiful landscape with mountains and trees",
"cameras": [
{
"quaternion": [0, 0, 0, 1],
"position": [0, 0, 5],
"fx": 500,
"fy": 500,
"cx": 240,
"cy": 240
},
{
"quaternion": [0, 0, 0, 1],
"position": [0, 0, 5],
"fx": 500,
"fy": 500,
"cx": 240,
"cy": 240
}
],
"resolution": [16, 480, 704],
"image_index": 0
}
```
""")
from contextlib import asynccontextmanager
@asynccontextmanager
async def lifespan_ctx(app):
app.state._cleanup_stop_event = asyncio.Event()
app.state._cleanup_task = asyncio.create_task(periodic_cache_cleanup(app.state._cleanup_stop_event, cache_dir))
try:
yield
finally:
if getattr(app.state, "_cleanup_stop_event", None):
app.state._cleanup_stop_event.set()
if getattr(app.state, "_cleanup_task", None):
try:
await app.state._cleanup_task
except Exception:
pass
app = FastAPI(lifespan=lifespan_ctx)
from starlette.responses import FileResponse
@app.get("/app")
async def read_index():
return FileResponse('index.html')
app = gr.mount_gradio_app(app, demo, path="/")
import uvicorn
from fastapi.staticfiles import StaticFiles
from fastapi import HTTPException
import asyncio
# 挂载静态文件目录,使其可以被访问。例如 /cache/<filename>
app.mount("/cache", StaticFiles(directory=cache_dir), name="cache")
# 删除指定 file_id 的生成文件(以及相关的中间文件)
@app.post("/delete/{file_id}")
async def delete_generated_file(file_id: str):
try:
deleted = False
# 关联的可能文件:.ply, .json, .mp4
for ext in (".ply", ".json", ".mp4"):
p = os.path.join(cache_dir, f"{file_id}{ext}")
if os.path.exists(p):
try:
os.remove(p)
deleted = True
except Exception:
pass
return {"success": True, "deleted": deleted}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# 定期清理创建/修改时间超过15分钟的文件
async def periodic_cache_cleanup(stop_event: asyncio.Event, directory: str, max_age_seconds: int = 15 * 60, interval_seconds: int = 300):
while not stop_event.is_set():
try:
now = time.time()
for name in os.listdir(directory):
path = os.path.join(directory, name)
try:
if os.path.isfile(path):
mtime = os.path.getmtime(path)
if (now - mtime) > max_age_seconds:
try:
os.remove(path)
except Exception:
pass
except Exception:
pass
except Exception:
pass
try:
await asyncio.wait_for(stop_event.wait(), timeout=interval_seconds)
except asyncio.TimeoutError:
continue
uvicorn.run(app, host="0.0.0.0", port=7860)
|