FlashWorld-Demo / app_gradio.py
imlixinyang's picture
add spz.
62432f1
raw
history blame
27.9 kB
try:
import spaces
GPU = spaces.GPU
print("spaces GPU is available")
except ImportError:
def GPU(func):
return func
import os
import subprocess
try:
import gsplat
except ImportError:
def install_cuda_toolkit():
# CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run"
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_550.54.14_linux.run"
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
os.environ["CUDA_HOME"],
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
)
# Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
os.environ["TORCH_CUDA_ARCH_LIST"] = "9.0+PTX"
print("Successfully installed CUDA toolkit at: ", os.environ["CUDA_HOME"])
subprocess.call('rm /usr/bin/gcc', shell=True)
subprocess.call('rm /usr/bin/g++', shell=True)
subprocess.call('ln -s /usr/bin/gcc-11 /usr/bin/gcc', shell=True)
subprocess.call('ln -s /usr/bin/g++-11 /usr/bin/g++', shell=True)
subprocess.call('gcc --version', shell=True)
subprocess.call('g++ --version', shell=True)
install_cuda_toolkit()
os.environ["TORCH_CUDA_ARCH_LIST"] = "9.0+PTX"
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] = "/usr/local/cuda/bin/:" + os.environ["PATH"]
subprocess.run('pip install git+https://github.com/nerfstudio-project/gsplat.git@32f2a54d21c7ecb135320bb02b136b7407ae5712',
env={'CUDA_HOME': "/usr/local/cuda", "TORCH_CUDA_ARCH_LIST": "9.0+PTX", "PATH": "/usr/local/cuda/bin/:" + os.environ["PATH"]}, shell=True)
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
import gradio as gr
import base64
import io
from PIL import Image
import torch
import numpy as np
import os
import argparse
import imageio
import json
import time
import tempfile
import shutil
import threading
from huggingface_hub import hf_hub_download
import einops
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import imageio
from models import *
from utils import *
from transformers import T5TokenizerFast, UMT5EncoderModel
from diffusers import FlowMatchEulerDiscreteScheduler
os.environ["TOKENIZERS_PARALLELISM"] = "false"
class MyFlowMatchEulerDiscreteScheduler(FlowMatchEulerDiscreteScheduler):
def index_for_timestep(self, timestep, schedule_timesteps=None):
if schedule_timesteps is None:
schedule_timesteps = self.timesteps
return torch.argmin(
(timestep - schedule_timesteps.to(timestep.device)).abs(), dim=0).item()
class GenerationSystem(nn.Module):
def __init__(self, ckpt_path=None, device="cuda:0", offload_t5=False, offload_vae=False):
super().__init__()
self.device = device
self.offload_t5 = offload_t5
self.offload_vae = offload_vae
self.latent_dim = 48
self.temporal_downsample_factor = 4
self.spatial_downsample_factor = 16
self.feat_dim = 1024
self.latent_patch_size = 2
self.denoising_steps = [0, 250, 500, 750]
model_id = "Wan-AI/Wan2.2-TI2V-5B-Diffusers"
self.vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float).eval()
from models.autoencoder_kl_wan import WanCausalConv3d
with torch.no_grad():
for name, module in self.vae.named_modules():
if isinstance(module, WanCausalConv3d):
time_pad = module._padding[4]
module.padding = (0, module._padding[2], module._padding[0])
module._padding = (0, 0, 0, 0, 0, 0)
module.weight = torch.nn.Parameter(module.weight[:, :, time_pad:].clone())
self.vae.requires_grad_(False)
self.register_buffer('latents_mean', torch.tensor(self.vae.config.latents_mean).float().view(1, self.vae.config.z_dim, 1, 1, 1).to(self.device))
self.register_buffer('latents_std', torch.tensor(self.vae.config.latents_std).float().view(1, self.vae.config.z_dim, 1, 1, 1).to(self.device))
self.tokenizer = T5TokenizerFast.from_pretrained(model_id, subfolder="tokenizer")
self.text_encoder = UMT5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.float32).eval().requires_grad_(False).to(self.device if not self.offload_t5 else "cpu")
self.transformer = WanTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.float32).train().requires_grad_(False)
self.transformer.patch_embedding.weight = nn.Parameter(F.pad(self.transformer.patch_embedding.weight, (0, 0, 0, 0, 0, 0, 0, 6 + self.latent_dim)))
# self.transformer.rope.freqs_f[:] = self.transformer.rope.freqs_f[:1]
weight = self.transformer.proj_out.weight.reshape(self.latent_patch_size ** 2, self.latent_dim, self.transformer.proj_out.weight.shape[1])
bias = self.transformer.proj_out.bias.reshape(self.latent_patch_size ** 2, self.latent_dim)
extra_weight = torch.randn(self.latent_patch_size ** 2, self.feat_dim, self.transformer.proj_out.weight.shape[1]) * 0.02
extra_bias = torch.zeros(self.latent_patch_size ** 2, self.feat_dim)
self.transformer.proj_out.weight = nn.Parameter(torch.cat([weight, extra_weight], dim=1).flatten(0, 1).detach().clone())
self.transformer.proj_out.bias = nn.Parameter(torch.cat([bias, extra_bias], dim=1).flatten(0, 1).detach().clone())
self.recon_decoder = WANDecoderPixelAligned3DGSReconstructionModel(self.vae, self.feat_dim, use_render_checkpointing=True, use_network_checkpointing=False).train().requires_grad_(False).to(self.device)
self.scheduler = MyFlowMatchEulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler", shift=3)
self.register_buffer('timesteps', self.scheduler.timesteps.clone().to(self.device))
self.transformer.disable_gradient_checkpointing()
self.transformer.gradient_checkpointing = False
self.add_feedback_for_transformer()
if ckpt_path is not None:
state_dict = torch.load(ckpt_path, map_location="cpu", weights_only=False)
self.transformer.load_state_dict(state_dict["transformer"])
self.recon_decoder.load_state_dict(state_dict["recon_decoder"])
print(f"Loaded {ckpt_path}.")
from quant import FluxFp8GeMMProcessor
FluxFp8GeMMProcessor(self.transformer)
del self.vae.post_quant_conv, self.vae.decoder
self.vae.to(self.device if not self.offload_vae else "cpu")
self.vae.to(torch.bfloat16)
self.transformer.to(self.device)
def latent_scale_fn(self, x):
return (x - self.latents_mean) / self.latents_std
def latent_unscale_fn(self, x):
return x * self.latents_std + self.latents_mean
def add_feedback_for_transformer(self):
self.use_feedback = True
self.transformer.patch_embedding.weight = nn.Parameter(F.pad(self.transformer.patch_embedding.weight, (0, 0, 0, 0, 0, 0, 0, self.feat_dim + self.latent_dim)))
def encode_text(self, texts):
max_sequence_length = 512
text_inputs = self.tokenizer(
texts,
padding="max_length",
max_length=max_sequence_length,
truncation=True,
add_special_tokens=True,
return_attention_mask=True,
return_tensors="pt",
)
if getattr(self, "offload_t5", False):
text_input_ids = text_inputs.input_ids.to("cpu")
mask = text_inputs.attention_mask.to("cpu")
else:
text_input_ids = text_inputs.input_ids.to(self.device)
mask = text_inputs.attention_mask.to(self.device)
seq_lens = mask.gt(0).sum(dim=1).long()
if getattr(self, "offload_t5", False):
with torch.no_grad():
text_embeds = self.text_encoder(text_input_ids, mask).last_hidden_state.to(self.device)
else:
text_embeds = self.text_encoder(text_input_ids, mask).last_hidden_state
text_embeds = [u[:v] for u, v in zip(text_embeds, seq_lens)]
text_embeds = torch.stack(
[torch.cat([u, u.new_zeros(max_sequence_length - u.size(0), u.size(1))]) for u in text_embeds], dim=0
)
return text_embeds.float()
def forward_generator(self, noisy_latents, raymaps, condition_latents, t, text_embeds, cameras, render_cameras, image_height, image_width, need_3d_mode=True):
out = self.transformer(
hidden_states=torch.cat([noisy_latents, raymaps, condition_latents], dim=1),
timestep=t,
encoder_hidden_states=text_embeds,
return_dict=False,
)[0]
v_pred, feats = out.split([self.latent_dim, self.feat_dim], dim=1)
sigma = torch.stack([self.scheduler.sigmas[self.scheduler.index_for_timestep(_t)] for _t in t.unbind(0)], dim=0).to(self.device)
latents_pred_2d = noisy_latents - sigma * v_pred
if need_3d_mode:
scene_params = self.recon_decoder(
einops.rearrange(feats, 'B C T H W -> (B T) C H W').unsqueeze(2),
einops.rearrange(self.latent_unscale_fn(latents_pred_2d.detach()), 'B C T H W -> (B T) C H W').unsqueeze(2),
cameras
).flatten(1, -2)
images_pred, _ = self.recon_decoder.render(scene_params.unbind(0), render_cameras, image_height, image_width, bg_mode="white")
latents_pred_3d = einops.rearrange(self.latent_scale_fn(self.vae.encode(
einops.rearrange(images_pred, 'B T C H W -> (B T) C H W', T=images_pred.shape[1]).unsqueeze(2).to(self.device if not self.offload_vae else "cpu").float()
).latent_dist.sample().to(self.device)).squeeze(2), '(B T) C H W -> B C T H W', T=images_pred.shape[1]).to(noisy_latents.dtype)
return {
'2d': latents_pred_2d,
'3d': latents_pred_3d if need_3d_mode else None,
'rgb_3d': images_pred if need_3d_mode else None,
'scene': scene_params if need_3d_mode else None,
'feat': feats
}
@torch.no_grad()
def generate(self, cameras, n_frame, image=None, text="", image_index=0, image_height=480, image_width=704, video_output_path=None):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.vae.to(self.device)
self.text_encoder.to(self.device if not self.offload_t5 else "cpu")
self.transformer.to(self.device)
self.recon_decoder.to(self.device)
self.timesteps = self.timesteps.to(self.device)
self.latents_mean = self.latents_mean.to(self.device)
self.latents_std = self.latents_std.to(self.device)
with torch.amp.autocast(dtype=torch.bfloat16, device_type="cuda"):
batch_size = 1
cameras = cameras.to(self.device).unsqueeze(0)
if cameras.shape[1] != n_frame:
render_cameras = cameras.clone()
cameras = sample_from_dense_cameras(cameras.squeeze(0), torch.linspace(0, 1, n_frame, device=self.device)).unsqueeze(0)
else:
render_cameras = cameras
cameras, ref_w2c, T_norm = normalize_cameras(cameras, return_meta=True, n_frame=None)
render_cameras = normalize_cameras(render_cameras, ref_w2c=ref_w2c, T_norm=T_norm, n_frame=None)
text = "[Static] " + text
text_embeds = self.encode_text([text])
# neg_text_embeds = self.encode_text([""]).repeat(batch_size, 1, 1)
masks = torch.zeros(batch_size, n_frame, device=self.device)
condition_latents = torch.zeros(batch_size, self.latent_dim, n_frame, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor, device=self.device)
if image is not None:
image = image.to(self.device)
latent = self.latent_scale_fn(self.vae.encode(
image.unsqueeze(0).unsqueeze(2).to(self.device if not self.offload_vae else "cpu").float()
).latent_dist.sample().to(self.device)).squeeze(2)
masks[:, image_index] = 1
condition_latents[:, :, image_index] = latent
raymaps = create_raymaps(cameras, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor)
raymaps = einops.rearrange(raymaps, 'B T H W C -> B C T H W', T=n_frame)
noise = torch.randn(batch_size, self.latent_dim, n_frame, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor, device=self.device)
noisy_latents = noise
torch.cuda.empty_cache()
if self.use_feedback:
prev_latents_pred = torch.zeros(batch_size, self.latent_dim, n_frame, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor, device=self.device)
prev_feats = torch.zeros(batch_size, self.feat_dim, n_frame, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor, device=self.device)
for i in range(len(self.denoising_steps)):
t_ids = torch.full((noisy_latents.shape[0],), self.denoising_steps[i], device=self.device)
t = self.timesteps[t_ids]
if self.use_feedback:
_condition_latents = torch.cat([condition_latents, prev_feats, prev_latents_pred], dim=1)
else:
_condition_latents = condition_latents
if i < len(self.denoising_steps) - 1:
out = self.forward_generator(noisy_latents, raymaps, _condition_latents, t, text_embeds, cameras, cameras, image_height, image_width, need_3d_mode=True)
latents_pred = out["3d"]
if self.use_feedback:
prev_latents_pred = latents_pred
prev_feats = out['feat']
noisy_latents = self.scheduler.scale_noise(latents_pred, self.timesteps[torch.full((noisy_latents.shape[0],), self.denoising_steps[i + 1], device=self.device)], torch.randn_like(noise))
else:
out = self.transformer(
hidden_states=torch.cat([noisy_latents, raymaps, _condition_latents], dim=1),
timestep=t,
encoder_hidden_states=text_embeds,
return_dict=False,
)[0]
v_pred, feats = out.split([self.latent_dim, self.feat_dim], dim=1)
sigma = torch.stack([self.scheduler.sigmas[self.scheduler.index_for_timestep(_t)] for _t in t.unbind(0)], dim=0).to(self.device)
latents_pred = noisy_latents - sigma * v_pred
scene_params = self.recon_decoder(
einops.rearrange(feats, 'B C T H W -> (B T) C H W').unsqueeze(2),
einops.rearrange(self.latent_unscale_fn(latents_pred.detach()), 'B C T H W -> (B T) C H W').unsqueeze(2),
cameras
).flatten(1, -2)
if video_output_path is not None:
interpolated_images_pred, _ = self.recon_decoder.render(scene_params.unbind(0), render_cameras, image_height, image_width, bg_mode="white")
interpolated_images_pred = einops.rearrange(interpolated_images_pred[0].clamp(-1, 1).add(1).div(2), 'T C H W -> T H W C')
interpolated_images_pred = [torch.cat([img], dim=1).detach().cpu().mul(255).numpy().astype(np.uint8) for i, img in enumerate(interpolated_images_pred.unbind(0))]
imageio.mimwrite(video_output_path, interpolated_images_pred, fps=15, quality=8, macro_block_size=1)
scene_params = scene_params[0]
scene_params = scene_params.detach().cpu()
return scene_params, ref_w2c, T_norm
@GPU
def process_generation_request(data, generation_system, cache_dir):
"""
Process the generation request with the same logic as Flask version
"""
try:
image_prompt = data.get('image_prompt', None)
text_prompt = data.get('text_prompt', "")
cameras = data.get('cameras')
resolution = data.get('resolution')
image_index = data.get('image_index', 0)
n_frame, image_height, image_width = resolution
if not image_prompt and text_prompt == "":
return {'error': 'No Prompts provided'}
if image_prompt:
# image_prompt可以是路径和base64
if os.path.exists(image_prompt):
image_prompt = Image.open(image_prompt)
else:
# image_prompt 可能是 "data:image/png;base64,...."
if ',' in image_prompt:
image_prompt = image_prompt.split(',', 1)[1]
try:
image_bytes = base64.b64decode(image_prompt)
image_prompt = Image.open(io.BytesIO(image_bytes))
except Exception as img_e:
return {'error': f'Image decode error: {str(img_e)}'}
image = image_prompt.convert('RGB')
w, h = image.size
# center crop
if image_height / h > image_width / w:
scale = image_height / h
else:
scale = image_width / w
new_h = int(image_height / scale)
new_w = int(image_width / scale)
image = image.crop(((w - new_w) // 2, (h - new_h) // 2,
new_w + (w - new_w) // 2, new_h + (h - new_h) // 2)).resize((image_width, image_height))
for camera in cameras:
camera['fx'] = camera['fx'] * scale
camera['fy'] = camera['fy'] * scale
camera['cx'] = (camera['cx'] - (w - new_w) // 2) * scale
camera['cy'] = (camera['cy'] - (h - new_h) // 2) * scale
image = torch.from_numpy(np.array(image)).float().permute(2, 0, 1) / 255.0 * 2 - 1
else:
image = None
cameras = torch.stack([
torch.from_numpy(np.array([camera['quaternion'][0], camera['quaternion'][1], camera['quaternion'][2], camera['quaternion'][3], camera['position'][0], camera['position'][1], camera['position'][2], camera['fx'] / image_width, camera['fy'] / image_height, camera['cx'] / image_width, camera['cy'] / image_height], dtype=np.float32))
for camera in cameras
], dim=0)
file_id = str(int(time.time() * 1000))
start_time = time.time()
scene_params, ref_w2c, T_norm = generation_system.generate(cameras, n_frame, image, text_prompt, image_index, image_height, image_width, video_output_path=os.path.join(cache_dir, f'{file_id}.mp4'))
end_time = time.time()
print(f'生成时间: {end_time - start_time} 秒')
with open(os.path.join(cache_dir, f'{file_id}.json'), 'w') as f:
json.dump(data, f)
splat_path = os.path.join(cache_dir, f'{file_id}.spz')
export_gaussians(splat_path, scene_params, opacity_threshold=0.001, T_norm=T_norm)
if not os.path.exists(splat_path):
return {'error': f'{splat_path} not found'}
file_size = os.path.getsize(splat_path)
response_data = {
'success': True,
'file_id': file_id,
'file_path': splat_path,
'file_size': file_size,
'download_url': f'/download/{file_id}',
'generation_time': end_time - start_time,
}
return response_data
except Exception as e:
return {'error': f'Processing error: {str(e)}'}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--port', type=int, default=7860)
parser.add_argument("--ckpt", default=None)
parser.add_argument("--cache_dir", type=str, default=None)
parser.add_argument("--offload_t5", type=bool, default=False)
parser.add_argument("--max_concurrent", type=int, default=1, help="Maximum concurrent generation tasks")
args, _ = parser.parse_known_args()
# Ensure model.ckpt exists, download if not present
if args.ckpt is None:
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
ckpt_path = os.path.join(HUGGINGFACE_HUB_CACHE, "models--imlixinyang--FlashWorld", "snapshots", "6a8e88c6f88678ac098e4c82675f0aee555d6e5d", "model.ckpt")
if not os.path.exists(ckpt_path):
hf_hub_download(repo_id="imlixinyang/FlashWorld", filename="model.ckpt", local_dir_use_symlinks=False)
else:
ckpt_path = args.ckpt
if args.cache_dir is None or args.cache_dir == "":
GRADIO_TEMP_DIR = tempfile.gettempdir()
cache_dir = os.path.join(GRADIO_TEMP_DIR, "flashworld_gradio")
else:
cache_dir = args.cache_dir
# Create cache directory
os.makedirs(cache_dir, exist_ok=True)
# Initialize GenerationSystem
device = torch.device("cpu")
generation_system = GenerationSystem(ckpt_path=ckpt_path, device=device)
# Create Gradio interface
with gr.Blocks(title="FlashWorld Backend") as demo:
gr.Markdown("FlashWorld Generation Backend — API only. This service powers the FlashWorld Web Demo and is intended for programmatic/API access. The UI is intentionally hidden.")
with gr.Row(visible=False):
with gr.Column():
json_input = gr.Textbox(
label="JSON Input",
placeholder="Enter JSON request here...",
lines=10,
value='{"image_prompt": null, "text_prompt": "A beautiful landscape", "cameras": [...], "resolution": [16, 480, 704], "image_index": 0}'
)
generate_btn = gr.Button("Generate", variant="primary")
with gr.Column():
json_output = gr.Textbox(
label="JSON Output",
lines=10,
interactive=False
)
# File download section
gr.Markdown("## File Download", visible=False)
with gr.Row(visible=False):
file_id_input = gr.Textbox(
label="File ID",
placeholder="Enter file ID to download..."
)
download_btn = gr.Button("Download SPZ File")
download_output = gr.File(label="Downloaded File")
def gradio_generate(json_input):
"""
Gradio interface function that processes JSON input and returns JSON output
"""
try:
# Parse JSON input
if isinstance(json_input, str):
data = json.loads(json_input)
else:
data = json_input
# Process the request
result = process_generation_request(data, generation_system, cache_dir)
# Return JSON response
return json.dumps(result, indent=2)
except Exception as e:
error_response = {'error': f'JSON processing error: {str(e)}'}
return json.dumps(error_response, indent=2)
def download_file(file_id):
"""
Download generated SPZ file
"""
file_path = os.path.join(cache_dir, f'{file_id}.spz')
if not os.path.exists(file_path):
return None
return file_path
def gradio_delete(file_id):
"""
Delete generated artifacts by file_id (.spz/.json/.mp4)
"""
deleted = False
try:
for ext in (".spz", ".json", ".mp4"):
p = os.path.join(cache_dir, f"{file_id}{ext}")
if os.path.exists(p):
try:
os.remove(p)
deleted = True
except Exception:
pass
return {"success": True, "deleted": deleted}
except Exception as e:
return {"success": False, "error": str(e)}
# Event handlers
generate_btn.click(
fn=gradio_generate,
inputs=[json_input],
outputs=[json_output]
)
download_btn.click(
fn=download_file,
inputs=[file_id_input],
outputs=[download_output]
)
# Hidden API hook for deletion to expose /gradio_api/call/gradio_delete
_hidden_delete_in = gr.Textbox(visible=False)
_hidden_delete_btn = gr.Button(visible=False)
_hidden_delete_btn.click(fn=gradio_delete, inputs=[_hidden_delete_in], outputs=[])
# Example JSON format
gr.Markdown("""
## Example JSON Input Format:
```json
{
"image_prompt": null,
"text_prompt": "A beautiful landscape with mountains and trees",
"cameras": [
{
"quaternion": [0, 0, 0, 1],
"position": [0, 0, 5],
"fx": 500,
"fy": 500,
"cx": 240,
"cy": 240
},
{
"quaternion": [0, 0, 0, 1],
"position": [0, 0, 5],
"fx": 500,
"fy": 500,
"cx": 240,
"cy": 240
}
],
"resolution": [16, 480, 704],
"image_index": 0
}
```
""", visible=False)
# Background periodic cleanup thread (no FastAPI app lifecycle)
def _cleanup_loop(directory: str, max_age_seconds: int = 15 * 60, interval_seconds: int = 300):
while True:
try:
now = time.time()
for name in os.listdir(directory):
path = os.path.join(directory, name)
try:
if os.path.isfile(path):
mtime = os.path.getmtime(path)
if (now - mtime) > max_age_seconds:
try:
os.remove(path)
except Exception:
pass
except Exception:
pass
except Exception:
pass
time.sleep(interval_seconds)
threading.Thread(target=_cleanup_loop, args=(cache_dir,), daemon=True).start()
demo.launch(allowed_paths=[cache_dir])