Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
62432f1
1
Parent(s):
854d14d
add spz.
Browse files- app.py +31 -37
- app_gradio copy.py +682 -0
- app_gradio.py +139 -90
- index.html +293 -181
- models/render.py +4 -2
- packages.txt +3 -1
- pre-requirements.txt +2 -1
- quant.py +1 -2
- requirements.txt +2 -1
- utils.py +45 -19
app.py
CHANGED
|
@@ -9,42 +9,36 @@ except ImportError:
|
|
| 9 |
import os
|
| 10 |
import subprocess
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
# CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
|
| 16 |
-
# subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
|
| 17 |
-
# subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
|
| 18 |
-
# subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
|
| 19 |
-
|
| 20 |
-
# os.environ["CUDA_HOME"] = "/usr/local/cuda"
|
| 21 |
-
# os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
|
| 22 |
-
# os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
|
| 23 |
-
# os.environ["CUDA_HOME"],
|
| 24 |
-
# "" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
|
| 25 |
-
# )
|
| 26 |
-
# # Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
|
| 27 |
-
# os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
|
| 28 |
-
|
| 29 |
-
# print("Successfully installed CUDA toolkit at: ", os.environ["CUDA_HOME"])
|
| 30 |
-
|
| 31 |
-
# subprocess.call('rm /usr/bin/gcc', shell=True)
|
| 32 |
-
# subprocess.call('rm /usr/bin/g++', shell=True)
|
| 33 |
-
# subprocess.call('rm /usr/local/cuda/bin/gcc', shell=True)
|
| 34 |
-
# subprocess.call('rm /usr/local/cuda/bin/g++', shell=True)
|
| 35 |
-
|
| 36 |
-
# subprocess.call('ln -s /usr/bin/gcc-11 /usr/bin/gcc', shell=True)
|
| 37 |
-
# subprocess.call('ln -s /usr/bin/g++-11 /usr/bin/g++', shell=True)
|
| 38 |
-
|
| 39 |
-
# subprocess.call('ln -s /usr/bin/gcc-11 /usr/local/cuda/bin/gcc', shell=True)
|
| 40 |
-
# subprocess.call('ln -s /usr/bin/g++-11 /usr/local/cuda/bin/g++', shell=True)
|
| 41 |
-
|
| 42 |
-
# subprocess.call('gcc --version', shell=True)
|
| 43 |
-
# subprocess.call('g++ --version', shell=True)
|
| 44 |
-
|
| 45 |
-
# install_cuda_toolkit()
|
| 46 |
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
from flask import Flask, jsonify, request, send_file, render_template
|
| 50 |
import base64
|
|
@@ -349,7 +343,7 @@ if __name__ == "__main__":
|
|
| 349 |
parser = argparse.ArgumentParser()
|
| 350 |
parser.add_argument('--port', type=int, default=7860)
|
| 351 |
parser.add_argument("--ckpt", default=None)
|
| 352 |
-
parser.add_argument("--gpu", type=int, default=
|
| 353 |
parser.add_argument("--cache_dir", type=str, default="./tmpfiles")
|
| 354 |
parser.add_argument("--offload_t5", type=bool, default=False)
|
| 355 |
parser.add_argument("--max_concurrent", type=int, default=1, help="Maximum concurrent generation tasks")
|
|
@@ -380,7 +374,7 @@ if __name__ == "__main__":
|
|
| 380 |
response.headers.add('Access-Control-Allow-Methods', 'GET,PUT,POST,DELETE,OPTIONS')
|
| 381 |
return response
|
| 382 |
|
| 383 |
-
@
|
| 384 |
def generate_wrapper(cameras, n_frame, image, text_prompt, image_index, image_height, image_width, video_output_path=None):
|
| 385 |
"""生成函数的包装器,用于并发控制"""
|
| 386 |
return generation_system.generate(cameras, n_frame, image, text_prompt, image_index, image_height, image_width, video_output_path)
|
|
|
|
| 9 |
import os
|
| 10 |
import subprocess
|
| 11 |
|
| 12 |
+
try:
|
| 13 |
+
import gsplat
|
| 14 |
+
except ImportError:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
def install_cuda_toolkit():
|
| 17 |
+
# CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run"
|
| 18 |
+
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_550.54.14_linux.run"
|
| 19 |
+
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
|
| 20 |
+
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
|
| 21 |
+
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
|
| 22 |
+
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
|
| 23 |
+
os.environ["CUDA_HOME"] = "/usr/local/cuda"
|
| 24 |
+
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
|
| 25 |
+
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
|
| 26 |
+
os.environ["CUDA_HOME"],
|
| 27 |
+
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
|
| 28 |
+
)
|
| 29 |
+
# Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
|
| 30 |
+
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
|
| 31 |
+
print("Successfully installed CUDA toolkit at: ", os.environ["CUDA_HOME"])
|
| 32 |
+
subprocess.call('rm /usr/bin/gcc', shell=True)
|
| 33 |
+
subprocess.call('rm /usr/bin/g++', shell=True)
|
| 34 |
+
subprocess.call('ln -s /usr/bin/gcc-11 /usr/bin/gcc', shell=True)
|
| 35 |
+
subprocess.call('ln -s /usr/bin/g++-11 /usr/bin/g++', shell=True)
|
| 36 |
+
subprocess.call('gcc --version', shell=True)
|
| 37 |
+
subprocess.call('g++ --version', shell=True)
|
| 38 |
+
|
| 39 |
+
install_cuda_toolkit()
|
| 40 |
+
|
| 41 |
+
subprocess.run('pip install git+https://github.com/nerfstudio-project/gsplat.git@32f2a54d21c7ecb135320bb02b136b7407ae5712 --no-build-isolation --use-pep517', env={'CUDA_HOME': "/usr/local/cuda", "TORCH_CUDA_ARCH_LIST": "8.0;8.6", "PATH": "/usr/local/cuda/bin/:" + os.environ["PATH"]}, shell=True)
|
| 42 |
|
| 43 |
from flask import Flask, jsonify, request, send_file, render_template
|
| 44 |
import base64
|
|
|
|
| 343 |
parser = argparse.ArgumentParser()
|
| 344 |
parser.add_argument('--port', type=int, default=7860)
|
| 345 |
parser.add_argument("--ckpt", default=None)
|
| 346 |
+
parser.add_argument("--gpu", type=int, default=0)
|
| 347 |
parser.add_argument("--cache_dir", type=str, default="./tmpfiles")
|
| 348 |
parser.add_argument("--offload_t5", type=bool, default=False)
|
| 349 |
parser.add_argument("--max_concurrent", type=int, default=1, help="Maximum concurrent generation tasks")
|
|
|
|
| 374 |
response.headers.add('Access-Control-Allow-Methods', 'GET,PUT,POST,DELETE,OPTIONS')
|
| 375 |
return response
|
| 376 |
|
| 377 |
+
@GPU
|
| 378 |
def generate_wrapper(cameras, n_frame, image, text_prompt, image_index, image_height, image_width, video_output_path=None):
|
| 379 |
"""生成函数的包装器,用于并发控制"""
|
| 380 |
return generation_system.generate(cameras, n_frame, image, text_prompt, image_index, image_height, image_width, video_output_path)
|
app_gradio copy.py
ADDED
|
@@ -0,0 +1,682 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
try:
|
| 2 |
+
import spaces
|
| 3 |
+
GPU = spaces.GPU
|
| 4 |
+
print("spaces GPU is available")
|
| 5 |
+
except ImportError:
|
| 6 |
+
def GPU(func):
|
| 7 |
+
return func
|
| 8 |
+
|
| 9 |
+
import os
|
| 10 |
+
import subprocess
|
| 11 |
+
|
| 12 |
+
try:
|
| 13 |
+
import gsplat
|
| 14 |
+
except ImportError:
|
| 15 |
+
def install_cuda_toolkit():
|
| 16 |
+
# CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run"
|
| 17 |
+
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_550.54.14_linux.run"
|
| 18 |
+
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
|
| 19 |
+
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
|
| 20 |
+
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
|
| 21 |
+
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
|
| 22 |
+
|
| 23 |
+
os.environ["CUDA_HOME"] = "/usr/local/cuda"
|
| 24 |
+
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
|
| 25 |
+
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
|
| 26 |
+
os.environ["CUDA_HOME"],
|
| 27 |
+
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
|
| 28 |
+
)
|
| 29 |
+
# Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
|
| 30 |
+
os.environ["TORCH_CUDA_ARCH_LIST"] = "9.0+PTX"
|
| 31 |
+
|
| 32 |
+
print("Successfully installed CUDA toolkit at: ", os.environ["CUDA_HOME"])
|
| 33 |
+
|
| 34 |
+
subprocess.call('rm /usr/bin/gcc', shell=True)
|
| 35 |
+
subprocess.call('rm /usr/bin/g++', shell=True)
|
| 36 |
+
|
| 37 |
+
subprocess.call('ln -s /usr/bin/gcc-11 /usr/bin/gcc', shell=True)
|
| 38 |
+
subprocess.call('ln -s /usr/bin/g++-11 /usr/bin/g++', shell=True)
|
| 39 |
+
|
| 40 |
+
subprocess.call('gcc --version', shell=True)
|
| 41 |
+
subprocess.call('g++ --version', shell=True)
|
| 42 |
+
|
| 43 |
+
install_cuda_toolkit()
|
| 44 |
+
|
| 45 |
+
os.environ["TORCH_CUDA_ARCH_LIST"] = "9.0+PTX"
|
| 46 |
+
os.environ["CUDA_HOME"] = "/usr/local/cuda"
|
| 47 |
+
os.environ["PATH"] = "/usr/local/cuda/bin/:" + os.environ["PATH"]
|
| 48 |
+
|
| 49 |
+
subprocess.run('pip install git+https://github.com/nerfstudio-project/gsplat.git@32f2a54d21c7ecb135320bb02b136b7407ae5712',
|
| 50 |
+
env={'CUDA_HOME': "/usr/local/cuda", "TORCH_CUDA_ARCH_LIST": "9.0+PTX", "PATH": "/usr/local/cuda/bin/:" + os.environ["PATH"]}, shell=True)
|
| 51 |
+
|
| 52 |
+
from fastapi import FastAPI
|
| 53 |
+
from fastapi.staticfiles import StaticFiles
|
| 54 |
+
import gradio as gr
|
| 55 |
+
import base64
|
| 56 |
+
import io
|
| 57 |
+
from PIL import Image
|
| 58 |
+
import torch
|
| 59 |
+
import numpy as np
|
| 60 |
+
import os
|
| 61 |
+
import argparse
|
| 62 |
+
import imageio
|
| 63 |
+
import json
|
| 64 |
+
import time
|
| 65 |
+
import tempfile
|
| 66 |
+
import shutil
|
| 67 |
+
|
| 68 |
+
from huggingface_hub import hf_hub_download
|
| 69 |
+
|
| 70 |
+
import einops
|
| 71 |
+
import torch
|
| 72 |
+
import torch.nn as nn
|
| 73 |
+
import torch.nn.functional as F
|
| 74 |
+
import numpy as np
|
| 75 |
+
|
| 76 |
+
import imageio
|
| 77 |
+
|
| 78 |
+
from models import *
|
| 79 |
+
from utils import *
|
| 80 |
+
|
| 81 |
+
from transformers import T5TokenizerFast, UMT5EncoderModel
|
| 82 |
+
|
| 83 |
+
from diffusers import FlowMatchEulerDiscreteScheduler
|
| 84 |
+
|
| 85 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 86 |
+
|
| 87 |
+
class MyFlowMatchEulerDiscreteScheduler(FlowMatchEulerDiscreteScheduler):
|
| 88 |
+
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
| 89 |
+
if schedule_timesteps is None:
|
| 90 |
+
schedule_timesteps = self.timesteps
|
| 91 |
+
|
| 92 |
+
return torch.argmin(
|
| 93 |
+
(timestep - schedule_timesteps.to(timestep.device)).abs(), dim=0).item()
|
| 94 |
+
|
| 95 |
+
class GenerationSystem(nn.Module):
|
| 96 |
+
def __init__(self, ckpt_path=None, device="cuda:0", offload_t5=False, offload_vae=False):
|
| 97 |
+
super().__init__()
|
| 98 |
+
self.device = device
|
| 99 |
+
self.offload_t5 = offload_t5
|
| 100 |
+
self.offload_vae = offload_vae
|
| 101 |
+
|
| 102 |
+
self.latent_dim = 48
|
| 103 |
+
self.temporal_downsample_factor = 4
|
| 104 |
+
self.spatial_downsample_factor = 16
|
| 105 |
+
|
| 106 |
+
self.feat_dim = 1024
|
| 107 |
+
|
| 108 |
+
self.latent_patch_size = 2
|
| 109 |
+
|
| 110 |
+
self.denoising_steps = [0, 250, 500, 750]
|
| 111 |
+
|
| 112 |
+
model_id = "Wan-AI/Wan2.2-TI2V-5B-Diffusers"
|
| 113 |
+
|
| 114 |
+
self.vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float).eval()
|
| 115 |
+
|
| 116 |
+
from models.autoencoder_kl_wan import WanCausalConv3d
|
| 117 |
+
with torch.no_grad():
|
| 118 |
+
for name, module in self.vae.named_modules():
|
| 119 |
+
if isinstance(module, WanCausalConv3d):
|
| 120 |
+
time_pad = module._padding[4]
|
| 121 |
+
module.padding = (0, module._padding[2], module._padding[0])
|
| 122 |
+
module._padding = (0, 0, 0, 0, 0, 0)
|
| 123 |
+
module.weight = torch.nn.Parameter(module.weight[:, :, time_pad:].clone())
|
| 124 |
+
|
| 125 |
+
self.vae.requires_grad_(False)
|
| 126 |
+
|
| 127 |
+
self.register_buffer('latents_mean', torch.tensor(self.vae.config.latents_mean).float().view(1, self.vae.config.z_dim, 1, 1, 1).to(self.device))
|
| 128 |
+
self.register_buffer('latents_std', torch.tensor(self.vae.config.latents_std).float().view(1, self.vae.config.z_dim, 1, 1, 1).to(self.device))
|
| 129 |
+
|
| 130 |
+
self.tokenizer = T5TokenizerFast.from_pretrained(model_id, subfolder="tokenizer")
|
| 131 |
+
|
| 132 |
+
self.text_encoder = UMT5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.float32).eval().requires_grad_(False).to(self.device if not self.offload_t5 else "cpu")
|
| 133 |
+
|
| 134 |
+
self.transformer = WanTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.float32).train().requires_grad_(False)
|
| 135 |
+
|
| 136 |
+
self.transformer.patch_embedding.weight = nn.Parameter(F.pad(self.transformer.patch_embedding.weight, (0, 0, 0, 0, 0, 0, 0, 6 + self.latent_dim)))
|
| 137 |
+
# self.transformer.rope.freqs_f[:] = self.transformer.rope.freqs_f[:1]
|
| 138 |
+
|
| 139 |
+
weight = self.transformer.proj_out.weight.reshape(self.latent_patch_size ** 2, self.latent_dim, self.transformer.proj_out.weight.shape[1])
|
| 140 |
+
bias = self.transformer.proj_out.bias.reshape(self.latent_patch_size ** 2, self.latent_dim)
|
| 141 |
+
|
| 142 |
+
extra_weight = torch.randn(self.latent_patch_size ** 2, self.feat_dim, self.transformer.proj_out.weight.shape[1]) * 0.02
|
| 143 |
+
extra_bias = torch.zeros(self.latent_patch_size ** 2, self.feat_dim)
|
| 144 |
+
|
| 145 |
+
self.transformer.proj_out.weight = nn.Parameter(torch.cat([weight, extra_weight], dim=1).flatten(0, 1).detach().clone())
|
| 146 |
+
self.transformer.proj_out.bias = nn.Parameter(torch.cat([bias, extra_bias], dim=1).flatten(0, 1).detach().clone())
|
| 147 |
+
|
| 148 |
+
self.recon_decoder = WANDecoderPixelAligned3DGSReconstructionModel(self.vae, self.feat_dim, use_render_checkpointing=True, use_network_checkpointing=False).train().requires_grad_(False).to(self.device)
|
| 149 |
+
|
| 150 |
+
self.scheduler = MyFlowMatchEulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler", shift=3)
|
| 151 |
+
|
| 152 |
+
self.register_buffer('timesteps', self.scheduler.timesteps.clone().to(self.device))
|
| 153 |
+
|
| 154 |
+
self.transformer.disable_gradient_checkpointing()
|
| 155 |
+
self.transformer.gradient_checkpointing = False
|
| 156 |
+
|
| 157 |
+
self.add_feedback_for_transformer()
|
| 158 |
+
|
| 159 |
+
if ckpt_path is not None:
|
| 160 |
+
state_dict = torch.load(ckpt_path, map_location="cpu", weights_only=False)
|
| 161 |
+
self.transformer.load_state_dict(state_dict["transformer"])
|
| 162 |
+
self.recon_decoder.load_state_dict(state_dict["recon_decoder"])
|
| 163 |
+
print(f"Loaded {ckpt_path}.")
|
| 164 |
+
|
| 165 |
+
from quant import FluxFp8GeMMProcessor
|
| 166 |
+
|
| 167 |
+
FluxFp8GeMMProcessor(self.transformer)
|
| 168 |
+
|
| 169 |
+
del self.vae.post_quant_conv, self.vae.decoder
|
| 170 |
+
self.vae.to(self.device if not self.offload_vae else "cpu")
|
| 171 |
+
self.vae.to(torch.bfloat16)
|
| 172 |
+
|
| 173 |
+
self.transformer.to(self.device)
|
| 174 |
+
|
| 175 |
+
def latent_scale_fn(self, x):
|
| 176 |
+
return (x - self.latents_mean) / self.latents_std
|
| 177 |
+
|
| 178 |
+
def latent_unscale_fn(self, x):
|
| 179 |
+
return x * self.latents_std + self.latents_mean
|
| 180 |
+
|
| 181 |
+
def add_feedback_for_transformer(self):
|
| 182 |
+
self.use_feedback = True
|
| 183 |
+
self.transformer.patch_embedding.weight = nn.Parameter(F.pad(self.transformer.patch_embedding.weight, (0, 0, 0, 0, 0, 0, 0, self.feat_dim + self.latent_dim)))
|
| 184 |
+
|
| 185 |
+
def encode_text(self, texts):
|
| 186 |
+
max_sequence_length = 512
|
| 187 |
+
|
| 188 |
+
text_inputs = self.tokenizer(
|
| 189 |
+
texts,
|
| 190 |
+
padding="max_length",
|
| 191 |
+
max_length=max_sequence_length,
|
| 192 |
+
truncation=True,
|
| 193 |
+
add_special_tokens=True,
|
| 194 |
+
return_attention_mask=True,
|
| 195 |
+
return_tensors="pt",
|
| 196 |
+
)
|
| 197 |
+
if getattr(self, "offload_t5", False):
|
| 198 |
+
text_input_ids = text_inputs.input_ids.to("cpu")
|
| 199 |
+
mask = text_inputs.attention_mask.to("cpu")
|
| 200 |
+
else:
|
| 201 |
+
text_input_ids = text_inputs.input_ids.to(self.device)
|
| 202 |
+
mask = text_inputs.attention_mask.to(self.device)
|
| 203 |
+
seq_lens = mask.gt(0).sum(dim=1).long()
|
| 204 |
+
|
| 205 |
+
if getattr(self, "offload_t5", False):
|
| 206 |
+
with torch.no_grad():
|
| 207 |
+
text_embeds = self.text_encoder(text_input_ids, mask).last_hidden_state.to(self.device)
|
| 208 |
+
else:
|
| 209 |
+
text_embeds = self.text_encoder(text_input_ids, mask).last_hidden_state
|
| 210 |
+
text_embeds = [u[:v] for u, v in zip(text_embeds, seq_lens)]
|
| 211 |
+
text_embeds = torch.stack(
|
| 212 |
+
[torch.cat([u, u.new_zeros(max_sequence_length - u.size(0), u.size(1))]) for u in text_embeds], dim=0
|
| 213 |
+
)
|
| 214 |
+
return text_embeds.float()
|
| 215 |
+
|
| 216 |
+
def forward_generator(self, noisy_latents, raymaps, condition_latents, t, text_embeds, cameras, render_cameras, image_height, image_width, need_3d_mode=True):
|
| 217 |
+
|
| 218 |
+
out = self.transformer(
|
| 219 |
+
hidden_states=torch.cat([noisy_latents, raymaps, condition_latents], dim=1),
|
| 220 |
+
timestep=t,
|
| 221 |
+
encoder_hidden_states=text_embeds,
|
| 222 |
+
return_dict=False,
|
| 223 |
+
)[0]
|
| 224 |
+
|
| 225 |
+
v_pred, feats = out.split([self.latent_dim, self.feat_dim], dim=1)
|
| 226 |
+
|
| 227 |
+
sigma = torch.stack([self.scheduler.sigmas[self.scheduler.index_for_timestep(_t)] for _t in t.unbind(0)], dim=0).to(self.device)
|
| 228 |
+
latents_pred_2d = noisy_latents - sigma * v_pred
|
| 229 |
+
|
| 230 |
+
if need_3d_mode:
|
| 231 |
+
scene_params = self.recon_decoder(
|
| 232 |
+
einops.rearrange(feats, 'B C T H W -> (B T) C H W').unsqueeze(2),
|
| 233 |
+
einops.rearrange(self.latent_unscale_fn(latents_pred_2d.detach()), 'B C T H W -> (B T) C H W').unsqueeze(2),
|
| 234 |
+
cameras
|
| 235 |
+
).flatten(1, -2)
|
| 236 |
+
|
| 237 |
+
images_pred, _ = self.recon_decoder.render(scene_params.unbind(0), render_cameras, image_height, image_width, bg_mode="white")
|
| 238 |
+
|
| 239 |
+
latents_pred_3d = einops.rearrange(self.latent_scale_fn(self.vae.encode(
|
| 240 |
+
einops.rearrange(images_pred, 'B T C H W -> (B T) C H W', T=images_pred.shape[1]).unsqueeze(2).to(self.device if not self.offload_vae else "cpu").float()
|
| 241 |
+
).latent_dist.sample().to(self.device)).squeeze(2), '(B T) C H W -> B C T H W', T=images_pred.shape[1]).to(noisy_latents.dtype)
|
| 242 |
+
|
| 243 |
+
return {
|
| 244 |
+
'2d': latents_pred_2d,
|
| 245 |
+
'3d': latents_pred_3d if need_3d_mode else None,
|
| 246 |
+
'rgb_3d': images_pred if need_3d_mode else None,
|
| 247 |
+
'scene': scene_params if need_3d_mode else None,
|
| 248 |
+
'feat': feats
|
| 249 |
+
}
|
| 250 |
+
|
| 251 |
+
@torch.no_grad()
|
| 252 |
+
def generate(self, cameras, n_frame, image=None, text="", image_index=0, image_height=480, image_width=704, video_output_path=None):
|
| 253 |
+
|
| 254 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 255 |
+
|
| 256 |
+
self.vae.to(self.device)
|
| 257 |
+
self.text_encoder.to(self.device if not self.offload_t5 else "cpu")
|
| 258 |
+
self.transformer.to(self.device)
|
| 259 |
+
self.recon_decoder.to(self.device)
|
| 260 |
+
self.timesteps = self.timesteps.to(self.device)
|
| 261 |
+
self.latents_mean = self.latents_mean.to(self.device)
|
| 262 |
+
self.latents_std = self.latents_std.to(self.device)
|
| 263 |
+
|
| 264 |
+
with torch.amp.autocast(dtype=torch.bfloat16, device_type="cuda"):
|
| 265 |
+
batch_size = 1
|
| 266 |
+
|
| 267 |
+
cameras = cameras.to(self.device).unsqueeze(0)
|
| 268 |
+
|
| 269 |
+
if cameras.shape[1] != n_frame:
|
| 270 |
+
render_cameras = cameras.clone()
|
| 271 |
+
cameras = sample_from_dense_cameras(cameras.squeeze(0), torch.linspace(0, 1, n_frame, device=self.device)).unsqueeze(0)
|
| 272 |
+
else:
|
| 273 |
+
render_cameras = cameras
|
| 274 |
+
|
| 275 |
+
cameras, ref_w2c, T_norm = normalize_cameras(cameras, return_meta=True, n_frame=None)
|
| 276 |
+
|
| 277 |
+
render_cameras = normalize_cameras(render_cameras, ref_w2c=ref_w2c, T_norm=T_norm, n_frame=None)
|
| 278 |
+
|
| 279 |
+
text = "[Static] " + text
|
| 280 |
+
|
| 281 |
+
text_embeds = self.encode_text([text])
|
| 282 |
+
# neg_text_embeds = self.encode_text([""]).repeat(batch_size, 1, 1)
|
| 283 |
+
|
| 284 |
+
masks = torch.zeros(batch_size, n_frame, device=self.device)
|
| 285 |
+
|
| 286 |
+
condition_latents = torch.zeros(batch_size, self.latent_dim, n_frame, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor, device=self.device)
|
| 287 |
+
|
| 288 |
+
if image is not None:
|
| 289 |
+
image = image.to(self.device)
|
| 290 |
+
|
| 291 |
+
latent = self.latent_scale_fn(self.vae.encode(
|
| 292 |
+
image.unsqueeze(0).unsqueeze(2).to(self.device if not self.offload_vae else "cpu").float()
|
| 293 |
+
).latent_dist.sample().to(self.device)).squeeze(2)
|
| 294 |
+
|
| 295 |
+
masks[:, image_index] = 1
|
| 296 |
+
condition_latents[:, :, image_index] = latent
|
| 297 |
+
|
| 298 |
+
raymaps = create_raymaps(cameras, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor)
|
| 299 |
+
raymaps = einops.rearrange(raymaps, 'B T H W C -> B C T H W', T=n_frame)
|
| 300 |
+
|
| 301 |
+
noise = torch.randn(batch_size, self.latent_dim, n_frame, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor, device=self.device)
|
| 302 |
+
|
| 303 |
+
noisy_latents = noise
|
| 304 |
+
|
| 305 |
+
torch.cuda.empty_cache()
|
| 306 |
+
|
| 307 |
+
if self.use_feedback:
|
| 308 |
+
prev_latents_pred = torch.zeros(batch_size, self.latent_dim, n_frame, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor, device=self.device)
|
| 309 |
+
|
| 310 |
+
prev_feats = torch.zeros(batch_size, self.feat_dim, n_frame, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor, device=self.device)
|
| 311 |
+
|
| 312 |
+
for i in range(len(self.denoising_steps)):
|
| 313 |
+
t_ids = torch.full((noisy_latents.shape[0],), self.denoising_steps[i], device=self.device)
|
| 314 |
+
|
| 315 |
+
t = self.timesteps[t_ids]
|
| 316 |
+
|
| 317 |
+
if self.use_feedback:
|
| 318 |
+
_condition_latents = torch.cat([condition_latents, prev_feats, prev_latents_pred], dim=1)
|
| 319 |
+
else:
|
| 320 |
+
_condition_latents = condition_latents
|
| 321 |
+
|
| 322 |
+
if i < len(self.denoising_steps) - 1:
|
| 323 |
+
out = self.forward_generator(noisy_latents, raymaps, _condition_latents, t, text_embeds, cameras, cameras, image_height, image_width, need_3d_mode=True)
|
| 324 |
+
|
| 325 |
+
latents_pred = out["3d"]
|
| 326 |
+
|
| 327 |
+
if self.use_feedback:
|
| 328 |
+
prev_latents_pred = latents_pred
|
| 329 |
+
prev_feats = out['feat']
|
| 330 |
+
|
| 331 |
+
noisy_latents = self.scheduler.scale_noise(latents_pred, self.timesteps[torch.full((noisy_latents.shape[0],), self.denoising_steps[i + 1], device=self.device)], torch.randn_like(noise))
|
| 332 |
+
|
| 333 |
+
else:
|
| 334 |
+
out = self.transformer(
|
| 335 |
+
hidden_states=torch.cat([noisy_latents, raymaps, _condition_latents], dim=1),
|
| 336 |
+
timestep=t,
|
| 337 |
+
encoder_hidden_states=text_embeds,
|
| 338 |
+
return_dict=False,
|
| 339 |
+
)[0]
|
| 340 |
+
|
| 341 |
+
v_pred, feats = out.split([self.latent_dim, self.feat_dim], dim=1)
|
| 342 |
+
|
| 343 |
+
sigma = torch.stack([self.scheduler.sigmas[self.scheduler.index_for_timestep(_t)] for _t in t.unbind(0)], dim=0).to(self.device)
|
| 344 |
+
latents_pred = noisy_latents - sigma * v_pred
|
| 345 |
+
|
| 346 |
+
scene_params = self.recon_decoder(
|
| 347 |
+
einops.rearrange(feats, 'B C T H W -> (B T) C H W').unsqueeze(2),
|
| 348 |
+
einops.rearrange(self.latent_unscale_fn(latents_pred.detach()), 'B C T H W -> (B T) C H W').unsqueeze(2),
|
| 349 |
+
cameras
|
| 350 |
+
).flatten(1, -2)
|
| 351 |
+
|
| 352 |
+
if video_output_path is not None:
|
| 353 |
+
interpolated_images_pred, _ = self.recon_decoder.render(scene_params.unbind(0), render_cameras, image_height, image_width, bg_mode="white")
|
| 354 |
+
|
| 355 |
+
interpolated_images_pred = einops.rearrange(interpolated_images_pred[0].clamp(-1, 1).add(1).div(2), 'T C H W -> T H W C')
|
| 356 |
+
|
| 357 |
+
interpolated_images_pred = [torch.cat([img], dim=1).detach().cpu().mul(255).numpy().astype(np.uint8) for i, img in enumerate(interpolated_images_pred.unbind(0))]
|
| 358 |
+
|
| 359 |
+
imageio.mimwrite(video_output_path, interpolated_images_pred, fps=15, quality=8, macro_block_size=1)
|
| 360 |
+
|
| 361 |
+
scene_params = scene_params[0]
|
| 362 |
+
|
| 363 |
+
scene_params = scene_params.detach().cpu()
|
| 364 |
+
|
| 365 |
+
return scene_params, ref_w2c, T_norm
|
| 366 |
+
|
| 367 |
+
@GPU
|
| 368 |
+
def process_generation_request(data, generation_system, cache_dir):
|
| 369 |
+
"""
|
| 370 |
+
Process the generation request with the same logic as Flask version
|
| 371 |
+
"""
|
| 372 |
+
try:
|
| 373 |
+
image_prompt = data.get('image_prompt', None)
|
| 374 |
+
text_prompt = data.get('text_prompt', "")
|
| 375 |
+
cameras = data.get('cameras')
|
| 376 |
+
resolution = data.get('resolution')
|
| 377 |
+
image_index = data.get('image_index', 0)
|
| 378 |
+
|
| 379 |
+
n_frame, image_height, image_width = resolution
|
| 380 |
+
|
| 381 |
+
if not image_prompt and text_prompt == "":
|
| 382 |
+
return {'error': 'No Prompts provided'}
|
| 383 |
+
|
| 384 |
+
if image_prompt:
|
| 385 |
+
# image_prompt可以是路径和base64
|
| 386 |
+
if os.path.exists(image_prompt):
|
| 387 |
+
image_prompt = Image.open(image_prompt)
|
| 388 |
+
else:
|
| 389 |
+
# image_prompt 可能是 "data:image/png;base64,...."
|
| 390 |
+
if ',' in image_prompt:
|
| 391 |
+
image_prompt = image_prompt.split(',', 1)[1]
|
| 392 |
+
|
| 393 |
+
try:
|
| 394 |
+
image_bytes = base64.b64decode(image_prompt)
|
| 395 |
+
image_prompt = Image.open(io.BytesIO(image_bytes))
|
| 396 |
+
except Exception as img_e:
|
| 397 |
+
return {'error': f'Image decode error: {str(img_e)}'}
|
| 398 |
+
|
| 399 |
+
image = image_prompt.convert('RGB')
|
| 400 |
+
|
| 401 |
+
w, h = image.size
|
| 402 |
+
|
| 403 |
+
# center crop
|
| 404 |
+
if image_height / h > image_width / w:
|
| 405 |
+
scale = image_height / h
|
| 406 |
+
else:
|
| 407 |
+
scale = image_width / w
|
| 408 |
+
|
| 409 |
+
new_h = int(image_height / scale)
|
| 410 |
+
new_w = int(image_width / scale)
|
| 411 |
+
|
| 412 |
+
image = image.crop(((w - new_w) // 2, (h - new_h) // 2,
|
| 413 |
+
new_w + (w - new_w) // 2, new_h + (h - new_h) // 2)).resize((image_width, image_height))
|
| 414 |
+
|
| 415 |
+
for camera in cameras:
|
| 416 |
+
camera['fx'] = camera['fx'] * scale
|
| 417 |
+
camera['fy'] = camera['fy'] * scale
|
| 418 |
+
camera['cx'] = (camera['cx'] - (w - new_w) // 2) * scale
|
| 419 |
+
camera['cy'] = (camera['cy'] - (h - new_h) // 2) * scale
|
| 420 |
+
|
| 421 |
+
image = torch.from_numpy(np.array(image)).float().permute(2, 0, 1) / 255.0 * 2 - 1
|
| 422 |
+
else:
|
| 423 |
+
image = None
|
| 424 |
+
|
| 425 |
+
cameras = torch.stack([
|
| 426 |
+
torch.from_numpy(np.array([camera['quaternion'][0], camera['quaternion'][1], camera['quaternion'][2], camera['quaternion'][3], camera['position'][0], camera['position'][1], camera['position'][2], camera['fx'] / image_width, camera['fy'] / image_height, camera['cx'] / image_width, camera['cy'] / image_height], dtype=np.float32))
|
| 427 |
+
for camera in cameras
|
| 428 |
+
], dim=0)
|
| 429 |
+
|
| 430 |
+
file_id = str(int(time.time() * 1000))
|
| 431 |
+
|
| 432 |
+
start_time = time.time()
|
| 433 |
+
scene_params, ref_w2c, T_norm = generation_system.generate(cameras, n_frame, image, text_prompt, image_index, image_height, image_width, video_output_path=os.path.join(cache_dir, f'{file_id}.mp4'))
|
| 434 |
+
end_time = time.time()
|
| 435 |
+
print(f'生成时间: {end_time - start_time} 秒')
|
| 436 |
+
|
| 437 |
+
with open(os.path.join(cache_dir, f'{file_id}.json'), 'w') as f:
|
| 438 |
+
json.dump(data, f)
|
| 439 |
+
|
| 440 |
+
splat_path = os.path.join(cache_dir, f'{file_id}.ply')
|
| 441 |
+
|
| 442 |
+
export_ply_for_gaussians(splat_path, scene_params, opacity_threshold=0.001, T_norm=T_norm)
|
| 443 |
+
|
| 444 |
+
if not os.path.exists(splat_path):
|
| 445 |
+
return {'error': f'{splat_path} not found'}
|
| 446 |
+
|
| 447 |
+
file_size = os.path.getsize(splat_path)
|
| 448 |
+
|
| 449 |
+
response_data = {
|
| 450 |
+
'success': True,
|
| 451 |
+
'file_id': file_id,
|
| 452 |
+
'file_path': splat_path,
|
| 453 |
+
'file_size': file_size,
|
| 454 |
+
'download_url': f'/download/{file_id}',
|
| 455 |
+
'generation_time': end_time - start_time,
|
| 456 |
+
}
|
| 457 |
+
|
| 458 |
+
return response_data
|
| 459 |
+
|
| 460 |
+
except Exception as e:
|
| 461 |
+
return {'error': f'Processing error: {str(e)}'}
|
| 462 |
+
|
| 463 |
+
if __name__ == "__main__":
|
| 464 |
+
parser = argparse.ArgumentParser()
|
| 465 |
+
parser.add_argument('--port', type=int, default=7860)
|
| 466 |
+
parser.add_argument("--ckpt", default=None)
|
| 467 |
+
parser.add_argument("--cache_dir", type=str, default=None)
|
| 468 |
+
parser.add_argument("--offload_t5", type=bool, default=False)
|
| 469 |
+
parser.add_argument("--max_concurrent", type=int, default=1, help="Maximum concurrent generation tasks")
|
| 470 |
+
args, _ = parser.parse_known_args()
|
| 471 |
+
|
| 472 |
+
# Ensure model.ckpt exists, download if not present
|
| 473 |
+
if args.ckpt is None:
|
| 474 |
+
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
|
| 475 |
+
ckpt_path = os.path.join(HUGGINGFACE_HUB_CACHE, "models--imlixinyang--FlashWorld", "snapshots", "6a8e88c6f88678ac098e4c82675f0aee555d6e5d", "model.ckpt")
|
| 476 |
+
if not os.path.exists(ckpt_path):
|
| 477 |
+
hf_hub_download(repo_id="imlixinyang/FlashWorld", filename="model.ckpt", local_dir_use_symlinks=False)
|
| 478 |
+
else:
|
| 479 |
+
ckpt_path = args.ckpt
|
| 480 |
+
|
| 481 |
+
if args.cache_dir is None or args.cache_dir == "":
|
| 482 |
+
GRADIO_TEMP_DIR = tempfile.gettempdir()
|
| 483 |
+
cache_dir = os.path.join(GRADIO_TEMP_DIR, "flashworld_gradio")
|
| 484 |
+
else:
|
| 485 |
+
cache_dir = args.cache_dir
|
| 486 |
+
|
| 487 |
+
# Create cache directory
|
| 488 |
+
os.makedirs(cache_dir, exist_ok=True)
|
| 489 |
+
|
| 490 |
+
# Initialize GenerationSystem
|
| 491 |
+
device = torch.device("cpu")
|
| 492 |
+
generation_system = GenerationSystem(ckpt_path=ckpt_path, device=device)
|
| 493 |
+
|
| 494 |
+
# Create Gradio interface
|
| 495 |
+
with gr.Blocks(title="FlashWorld Backend") as demo:
|
| 496 |
+
gr.Markdown("# FlashWorld Generation Backend")
|
| 497 |
+
gr.Markdown("This backend processes JSON requests for 3D scene generation.")
|
| 498 |
+
|
| 499 |
+
with gr.Row():
|
| 500 |
+
with gr.Column():
|
| 501 |
+
json_input = gr.Textbox(
|
| 502 |
+
label="JSON Input",
|
| 503 |
+
placeholder="Enter JSON request here...",
|
| 504 |
+
lines=10,
|
| 505 |
+
value='{"image_prompt": null, "text_prompt": "A beautiful landscape", "cameras": [...], "resolution": [16, 480, 704], "image_index": 0}'
|
| 506 |
+
)
|
| 507 |
+
|
| 508 |
+
generate_btn = gr.Button("Generate", variant="primary")
|
| 509 |
+
|
| 510 |
+
with gr.Column():
|
| 511 |
+
json_output = gr.Textbox(
|
| 512 |
+
label="JSON Output",
|
| 513 |
+
lines=10,
|
| 514 |
+
interactive=False
|
| 515 |
+
)
|
| 516 |
+
|
| 517 |
+
# File download section
|
| 518 |
+
gr.Markdown("## File Download")
|
| 519 |
+
with gr.Row():
|
| 520 |
+
file_id_input = gr.Textbox(
|
| 521 |
+
label="File ID",
|
| 522 |
+
placeholder="Enter file ID to download..."
|
| 523 |
+
)
|
| 524 |
+
download_btn = gr.Button("Download PLY File")
|
| 525 |
+
download_output = gr.File(label="Downloaded File")
|
| 526 |
+
|
| 527 |
+
|
| 528 |
+
def gradio_generate(json_input):
|
| 529 |
+
"""
|
| 530 |
+
Gradio interface function that processes JSON input and returns JSON output
|
| 531 |
+
"""
|
| 532 |
+
try:
|
| 533 |
+
# Parse JSON input
|
| 534 |
+
if isinstance(json_input, str):
|
| 535 |
+
data = json.loads(json_input)
|
| 536 |
+
else:
|
| 537 |
+
data = json_input
|
| 538 |
+
|
| 539 |
+
# Process the request
|
| 540 |
+
result = process_generation_request(data, generation_system, cache_dir)
|
| 541 |
+
|
| 542 |
+
# Return JSON response
|
| 543 |
+
return json.dumps(result, indent=2)
|
| 544 |
+
|
| 545 |
+
except Exception as e:
|
| 546 |
+
error_response = {'error': f'JSON processing error: {str(e)}'}
|
| 547 |
+
return json.dumps(error_response, indent=2)
|
| 548 |
+
|
| 549 |
+
def download_file(file_id):
|
| 550 |
+
"""
|
| 551 |
+
Download generated PLY file
|
| 552 |
+
"""
|
| 553 |
+
file_path = os.path.join(cache_dir, f'{file_id}.ply')
|
| 554 |
+
|
| 555 |
+
if not os.path.exists(file_path):
|
| 556 |
+
return None
|
| 557 |
+
|
| 558 |
+
return file_path
|
| 559 |
+
|
| 560 |
+
# Event handlers
|
| 561 |
+
generate_btn.click(
|
| 562 |
+
fn=gradio_generate,
|
| 563 |
+
inputs=[json_input],
|
| 564 |
+
outputs=[json_output]
|
| 565 |
+
)
|
| 566 |
+
|
| 567 |
+
download_btn.click(
|
| 568 |
+
fn=download_file,
|
| 569 |
+
inputs=[file_id_input],
|
| 570 |
+
outputs=[download_output]
|
| 571 |
+
)
|
| 572 |
+
|
| 573 |
+
# Example JSON format
|
| 574 |
+
gr.Markdown("""
|
| 575 |
+
## Example JSON Input Format:
|
| 576 |
+
```json
|
| 577 |
+
{
|
| 578 |
+
"image_prompt": null,
|
| 579 |
+
"text_prompt": "A beautiful landscape with mountains and trees",
|
| 580 |
+
"cameras": [
|
| 581 |
+
{
|
| 582 |
+
"quaternion": [0, 0, 0, 1],
|
| 583 |
+
"position": [0, 0, 5],
|
| 584 |
+
"fx": 500,
|
| 585 |
+
"fy": 500,
|
| 586 |
+
"cx": 240,
|
| 587 |
+
"cy": 240
|
| 588 |
+
},
|
| 589 |
+
{
|
| 590 |
+
"quaternion": [0, 0, 0, 1],
|
| 591 |
+
"position": [0, 0, 5],
|
| 592 |
+
"fx": 500,
|
| 593 |
+
"fy": 500,
|
| 594 |
+
"cx": 240,
|
| 595 |
+
"cy": 240
|
| 596 |
+
}
|
| 597 |
+
],
|
| 598 |
+
"resolution": [16, 480, 704],
|
| 599 |
+
"image_index": 0
|
| 600 |
+
}
|
| 601 |
+
```
|
| 602 |
+
""")
|
| 603 |
+
|
| 604 |
+
from contextlib import asynccontextmanager
|
| 605 |
+
|
| 606 |
+
@asynccontextmanager
|
| 607 |
+
async def lifespan_ctx(app):
|
| 608 |
+
app.state._cleanup_stop_event = asyncio.Event()
|
| 609 |
+
app.state._cleanup_task = asyncio.create_task(periodic_cache_cleanup(app.state._cleanup_stop_event, cache_dir))
|
| 610 |
+
try:
|
| 611 |
+
yield
|
| 612 |
+
finally:
|
| 613 |
+
if getattr(app.state, "_cleanup_stop_event", None):
|
| 614 |
+
app.state._cleanup_stop_event.set()
|
| 615 |
+
if getattr(app.state, "_cleanup_task", None):
|
| 616 |
+
try:
|
| 617 |
+
await app.state._cleanup_task
|
| 618 |
+
except Exception:
|
| 619 |
+
pass
|
| 620 |
+
|
| 621 |
+
app = FastAPI(lifespan=lifespan_ctx)
|
| 622 |
+
|
| 623 |
+
from starlette.responses import FileResponse
|
| 624 |
+
|
| 625 |
+
@app.get("/app")
|
| 626 |
+
async def read_index():
|
| 627 |
+
return FileResponse('index.html')
|
| 628 |
+
|
| 629 |
+
app = gr.mount_gradio_app(app, demo, path="/")
|
| 630 |
+
|
| 631 |
+
import uvicorn
|
| 632 |
+
|
| 633 |
+
from fastapi.staticfiles import StaticFiles
|
| 634 |
+
from fastapi import HTTPException
|
| 635 |
+
import asyncio
|
| 636 |
+
|
| 637 |
+
# 挂载静态文件目录,使其可以被访问。例如 /cache/<filename>
|
| 638 |
+
app.mount("/cache", StaticFiles(directory=cache_dir), name="cache")
|
| 639 |
+
|
| 640 |
+
# 删除指定 file_id 的生成文件(以及相关的中间文件)
|
| 641 |
+
@app.post("/delete/{file_id}")
|
| 642 |
+
async def delete_generated_file(file_id: str):
|
| 643 |
+
try:
|
| 644 |
+
deleted = False
|
| 645 |
+
# 关联的可能文件:.ply, .json, .mp4
|
| 646 |
+
for ext in (".ply", ".json", ".mp4"):
|
| 647 |
+
p = os.path.join(cache_dir, f"{file_id}{ext}")
|
| 648 |
+
if os.path.exists(p):
|
| 649 |
+
try:
|
| 650 |
+
os.remove(p)
|
| 651 |
+
deleted = True
|
| 652 |
+
except Exception:
|
| 653 |
+
pass
|
| 654 |
+
return {"success": True, "deleted": deleted}
|
| 655 |
+
except Exception as e:
|
| 656 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 657 |
+
|
| 658 |
+
# 定期清理创建/修改时间超过15分钟的文件
|
| 659 |
+
async def periodic_cache_cleanup(stop_event: asyncio.Event, directory: str, max_age_seconds: int = 15 * 60, interval_seconds: int = 300):
|
| 660 |
+
while not stop_event.is_set():
|
| 661 |
+
try:
|
| 662 |
+
now = time.time()
|
| 663 |
+
for name in os.listdir(directory):
|
| 664 |
+
path = os.path.join(directory, name)
|
| 665 |
+
try:
|
| 666 |
+
if os.path.isfile(path):
|
| 667 |
+
mtime = os.path.getmtime(path)
|
| 668 |
+
if (now - mtime) > max_age_seconds:
|
| 669 |
+
try:
|
| 670 |
+
os.remove(path)
|
| 671 |
+
except Exception:
|
| 672 |
+
pass
|
| 673 |
+
except Exception:
|
| 674 |
+
pass
|
| 675 |
+
except Exception:
|
| 676 |
+
pass
|
| 677 |
+
try:
|
| 678 |
+
await asyncio.wait_for(stop_event.wait(), timeout=interval_seconds)
|
| 679 |
+
except asyncio.TimeoutError:
|
| 680 |
+
continue
|
| 681 |
+
|
| 682 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
app_gradio.py
CHANGED
|
@@ -9,43 +9,48 @@ except ImportError:
|
|
| 9 |
import os
|
| 10 |
import subprocess
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
#
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
-
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
# subprocess.call('rm /usr/local/cuda/bin/gcc', shell=True)
|
| 34 |
-
# subprocess.call('rm /usr/local/cuda/bin/g++', shell=True)
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
|
| 42 |
-
|
| 43 |
-
# subprocess.call('g++ --version', shell=True)
|
| 44 |
|
| 45 |
-
|
|
|
|
|
|
|
| 46 |
|
| 47 |
-
|
|
|
|
| 48 |
|
|
|
|
|
|
|
| 49 |
import gradio as gr
|
| 50 |
import base64
|
| 51 |
import io
|
|
@@ -59,6 +64,7 @@ import json
|
|
| 59 |
import time
|
| 60 |
import tempfile
|
| 61 |
import shutil
|
|
|
|
| 62 |
|
| 63 |
from huggingface_hub import hf_hub_download
|
| 64 |
|
|
@@ -78,7 +84,6 @@ from transformers import T5TokenizerFast, UMT5EncoderModel
|
|
| 78 |
from diffusers import FlowMatchEulerDiscreteScheduler
|
| 79 |
|
| 80 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 81 |
-
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
| 82 |
|
| 83 |
class MyFlowMatchEulerDiscreteScheduler(FlowMatchEulerDiscreteScheduler):
|
| 84 |
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
|
@@ -152,11 +157,11 @@ class GenerationSystem(nn.Module):
|
|
| 152 |
|
| 153 |
self.add_feedback_for_transformer()
|
| 154 |
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
|
| 161 |
from quant import FluxFp8GeMMProcessor
|
| 162 |
|
|
@@ -164,6 +169,7 @@ class GenerationSystem(nn.Module):
|
|
| 164 |
|
| 165 |
del self.vae.post_quant_conv, self.vae.decoder
|
| 166 |
self.vae.to(self.device if not self.offload_vae else "cpu")
|
|
|
|
| 167 |
|
| 168 |
self.transformer.to(self.device)
|
| 169 |
|
|
@@ -243,11 +249,12 @@ class GenerationSystem(nn.Module):
|
|
| 243 |
'feat': feats
|
| 244 |
}
|
| 245 |
|
| 246 |
-
@GPU
|
| 247 |
@torch.no_grad()
|
| 248 |
-
|
| 249 |
-
|
|
|
|
| 250 |
|
|
|
|
| 251 |
self.text_encoder.to(self.device if not self.offload_t5 else "cpu")
|
| 252 |
self.transformer.to(self.device)
|
| 253 |
self.recon_decoder.to(self.device)
|
|
@@ -255,7 +262,7 @@ class GenerationSystem(nn.Module):
|
|
| 255 |
self.latents_mean = self.latents_mean.to(self.device)
|
| 256 |
self.latents_std = self.latents_std.to(self.device)
|
| 257 |
|
| 258 |
-
with torch.
|
| 259 |
batch_size = 1
|
| 260 |
|
| 261 |
cameras = cameras.to(self.device).unsqueeze(0)
|
|
@@ -358,6 +365,7 @@ class GenerationSystem(nn.Module):
|
|
| 358 |
|
| 359 |
return scene_params, ref_w2c, T_norm
|
| 360 |
|
|
|
|
| 361 |
def process_generation_request(data, generation_system, cache_dir):
|
| 362 |
"""
|
| 363 |
Process the generation request with the same logic as Flask version
|
|
@@ -430,9 +438,9 @@ def process_generation_request(data, generation_system, cache_dir):
|
|
| 430 |
with open(os.path.join(cache_dir, f'{file_id}.json'), 'w') as f:
|
| 431 |
json.dump(data, f)
|
| 432 |
|
| 433 |
-
splat_path = os.path.join(cache_dir, f'{file_id}.
|
| 434 |
|
| 435 |
-
|
| 436 |
|
| 437 |
if not os.path.exists(splat_path):
|
| 438 |
return {'error': f'{splat_path} not found'}
|
|
@@ -453,43 +461,10 @@ def process_generation_request(data, generation_system, cache_dir):
|
|
| 453 |
except Exception as e:
|
| 454 |
return {'error': f'Processing error: {str(e)}'}
|
| 455 |
|
| 456 |
-
def gradio_generate(json_input, generation_system, cache_dir):
|
| 457 |
-
"""
|
| 458 |
-
Gradio interface function that processes JSON input and returns JSON output
|
| 459 |
-
"""
|
| 460 |
-
try:
|
| 461 |
-
# Parse JSON input
|
| 462 |
-
if isinstance(json_input, str):
|
| 463 |
-
data = json.loads(json_input)
|
| 464 |
-
else:
|
| 465 |
-
data = json_input
|
| 466 |
-
|
| 467 |
-
# Process the request
|
| 468 |
-
result = process_generation_request(data, generation_system, cache_dir)
|
| 469 |
-
|
| 470 |
-
# Return JSON response
|
| 471 |
-
return json.dumps(result, indent=2)
|
| 472 |
-
|
| 473 |
-
except Exception as e:
|
| 474 |
-
error_response = {'error': f'JSON processing error: {str(e)}'}
|
| 475 |
-
return json.dumps(error_response, indent=2)
|
| 476 |
-
|
| 477 |
-
def download_file(file_id, cache_dir):
|
| 478 |
-
"""
|
| 479 |
-
Download generated PLY file
|
| 480 |
-
"""
|
| 481 |
-
file_path = os.path.join(cache_dir, f'{file_id}.ply')
|
| 482 |
-
|
| 483 |
-
if not os.path.exists(file_path):
|
| 484 |
-
return None
|
| 485 |
-
|
| 486 |
-
return file_path
|
| 487 |
-
|
| 488 |
if __name__ == "__main__":
|
| 489 |
parser = argparse.ArgumentParser()
|
| 490 |
parser.add_argument('--port', type=int, default=7860)
|
| 491 |
parser.add_argument("--ckpt", default=None)
|
| 492 |
-
parser.add_argument("--gpu", type=int, default=0)
|
| 493 |
parser.add_argument("--cache_dir", type=str, default=None)
|
| 494 |
parser.add_argument("--offload_t5", type=bool, default=False)
|
| 495 |
parser.add_argument("--max_concurrent", type=int, default=1, help="Maximum concurrent generation tasks")
|
|
@@ -514,15 +489,14 @@ if __name__ == "__main__":
|
|
| 514 |
os.makedirs(cache_dir, exist_ok=True)
|
| 515 |
|
| 516 |
# Initialize GenerationSystem
|
| 517 |
-
device =
|
| 518 |
generation_system = GenerationSystem(ckpt_path=ckpt_path, device=device)
|
| 519 |
|
| 520 |
# Create Gradio interface
|
| 521 |
with gr.Blocks(title="FlashWorld Backend") as demo:
|
| 522 |
-
gr.Markdown("
|
| 523 |
-
gr.Markdown("This backend processes JSON requests for 3D scene generation.")
|
| 524 |
|
| 525 |
-
with gr.Row():
|
| 526 |
with gr.Column():
|
| 527 |
json_input = gr.Textbox(
|
| 528 |
label="JSON Input",
|
|
@@ -541,27 +515,83 @@ if __name__ == "__main__":
|
|
| 541 |
)
|
| 542 |
|
| 543 |
# File download section
|
| 544 |
-
gr.Markdown("## File Download")
|
| 545 |
-
with gr.Row():
|
| 546 |
file_id_input = gr.Textbox(
|
| 547 |
label="File ID",
|
| 548 |
placeholder="Enter file ID to download..."
|
| 549 |
)
|
| 550 |
-
download_btn = gr.Button("Download
|
| 551 |
download_output = gr.File(label="Downloaded File")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 552 |
|
| 553 |
# Event handlers
|
| 554 |
generate_btn.click(
|
| 555 |
-
fn=
|
| 556 |
inputs=[json_input],
|
| 557 |
outputs=[json_output]
|
| 558 |
)
|
| 559 |
|
| 560 |
download_btn.click(
|
| 561 |
-
fn=
|
| 562 |
inputs=[file_id_input],
|
| 563 |
outputs=[download_output]
|
| 564 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 565 |
|
| 566 |
# Example JSON format
|
| 567 |
gr.Markdown("""
|
|
@@ -592,10 +622,29 @@ if __name__ == "__main__":
|
|
| 592 |
"image_index": 0
|
| 593 |
}
|
| 594 |
```
|
| 595 |
-
""")
|
| 596 |
-
|
| 597 |
-
#
|
| 598 |
-
|
| 599 |
-
|
| 600 |
-
|
| 601 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
import os
|
| 10 |
import subprocess
|
| 11 |
|
| 12 |
+
try:
|
| 13 |
+
import gsplat
|
| 14 |
+
except ImportError:
|
| 15 |
+
def install_cuda_toolkit():
|
| 16 |
+
# CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run"
|
| 17 |
+
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_550.54.14_linux.run"
|
| 18 |
+
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
|
| 19 |
+
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
|
| 20 |
+
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
|
| 21 |
+
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
|
| 22 |
+
|
| 23 |
+
os.environ["CUDA_HOME"] = "/usr/local/cuda"
|
| 24 |
+
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
|
| 25 |
+
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
|
| 26 |
+
os.environ["CUDA_HOME"],
|
| 27 |
+
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
|
| 28 |
+
)
|
| 29 |
+
# Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
|
| 30 |
+
os.environ["TORCH_CUDA_ARCH_LIST"] = "9.0+PTX"
|
| 31 |
|
| 32 |
+
print("Successfully installed CUDA toolkit at: ", os.environ["CUDA_HOME"])
|
| 33 |
|
| 34 |
+
subprocess.call('rm /usr/bin/gcc', shell=True)
|
| 35 |
+
subprocess.call('rm /usr/bin/g++', shell=True)
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
subprocess.call('ln -s /usr/bin/gcc-11 /usr/bin/gcc', shell=True)
|
| 38 |
+
subprocess.call('ln -s /usr/bin/g++-11 /usr/bin/g++', shell=True)
|
| 39 |
|
| 40 |
+
subprocess.call('gcc --version', shell=True)
|
| 41 |
+
subprocess.call('g++ --version', shell=True)
|
| 42 |
|
| 43 |
+
install_cuda_toolkit()
|
|
|
|
| 44 |
|
| 45 |
+
os.environ["TORCH_CUDA_ARCH_LIST"] = "9.0+PTX"
|
| 46 |
+
os.environ["CUDA_HOME"] = "/usr/local/cuda"
|
| 47 |
+
os.environ["PATH"] = "/usr/local/cuda/bin/:" + os.environ["PATH"]
|
| 48 |
|
| 49 |
+
subprocess.run('pip install git+https://github.com/nerfstudio-project/gsplat.git@32f2a54d21c7ecb135320bb02b136b7407ae5712',
|
| 50 |
+
env={'CUDA_HOME': "/usr/local/cuda", "TORCH_CUDA_ARCH_LIST": "9.0+PTX", "PATH": "/usr/local/cuda/bin/:" + os.environ["PATH"]}, shell=True)
|
| 51 |
|
| 52 |
+
from fastapi import FastAPI
|
| 53 |
+
from fastapi.staticfiles import StaticFiles
|
| 54 |
import gradio as gr
|
| 55 |
import base64
|
| 56 |
import io
|
|
|
|
| 64 |
import time
|
| 65 |
import tempfile
|
| 66 |
import shutil
|
| 67 |
+
import threading
|
| 68 |
|
| 69 |
from huggingface_hub import hf_hub_download
|
| 70 |
|
|
|
|
| 84 |
from diffusers import FlowMatchEulerDiscreteScheduler
|
| 85 |
|
| 86 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
|
|
|
| 87 |
|
| 88 |
class MyFlowMatchEulerDiscreteScheduler(FlowMatchEulerDiscreteScheduler):
|
| 89 |
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
|
|
|
| 157 |
|
| 158 |
self.add_feedback_for_transformer()
|
| 159 |
|
| 160 |
+
if ckpt_path is not None:
|
| 161 |
+
state_dict = torch.load(ckpt_path, map_location="cpu", weights_only=False)
|
| 162 |
+
self.transformer.load_state_dict(state_dict["transformer"])
|
| 163 |
+
self.recon_decoder.load_state_dict(state_dict["recon_decoder"])
|
| 164 |
+
print(f"Loaded {ckpt_path}.")
|
| 165 |
|
| 166 |
from quant import FluxFp8GeMMProcessor
|
| 167 |
|
|
|
|
| 169 |
|
| 170 |
del self.vae.post_quant_conv, self.vae.decoder
|
| 171 |
self.vae.to(self.device if not self.offload_vae else "cpu")
|
| 172 |
+
self.vae.to(torch.bfloat16)
|
| 173 |
|
| 174 |
self.transformer.to(self.device)
|
| 175 |
|
|
|
|
| 249 |
'feat': feats
|
| 250 |
}
|
| 251 |
|
|
|
|
| 252 |
@torch.no_grad()
|
| 253 |
+
def generate(self, cameras, n_frame, image=None, text="", image_index=0, image_height=480, image_width=704, video_output_path=None):
|
| 254 |
+
|
| 255 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 256 |
|
| 257 |
+
self.vae.to(self.device)
|
| 258 |
self.text_encoder.to(self.device if not self.offload_t5 else "cpu")
|
| 259 |
self.transformer.to(self.device)
|
| 260 |
self.recon_decoder.to(self.device)
|
|
|
|
| 262 |
self.latents_mean = self.latents_mean.to(self.device)
|
| 263 |
self.latents_std = self.latents_std.to(self.device)
|
| 264 |
|
| 265 |
+
with torch.amp.autocast(dtype=torch.bfloat16, device_type="cuda"):
|
| 266 |
batch_size = 1
|
| 267 |
|
| 268 |
cameras = cameras.to(self.device).unsqueeze(0)
|
|
|
|
| 365 |
|
| 366 |
return scene_params, ref_w2c, T_norm
|
| 367 |
|
| 368 |
+
@GPU
|
| 369 |
def process_generation_request(data, generation_system, cache_dir):
|
| 370 |
"""
|
| 371 |
Process the generation request with the same logic as Flask version
|
|
|
|
| 438 |
with open(os.path.join(cache_dir, f'{file_id}.json'), 'w') as f:
|
| 439 |
json.dump(data, f)
|
| 440 |
|
| 441 |
+
splat_path = os.path.join(cache_dir, f'{file_id}.spz')
|
| 442 |
|
| 443 |
+
export_gaussians(splat_path, scene_params, opacity_threshold=0.001, T_norm=T_norm)
|
| 444 |
|
| 445 |
if not os.path.exists(splat_path):
|
| 446 |
return {'error': f'{splat_path} not found'}
|
|
|
|
| 461 |
except Exception as e:
|
| 462 |
return {'error': f'Processing error: {str(e)}'}
|
| 463 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 464 |
if __name__ == "__main__":
|
| 465 |
parser = argparse.ArgumentParser()
|
| 466 |
parser.add_argument('--port', type=int, default=7860)
|
| 467 |
parser.add_argument("--ckpt", default=None)
|
|
|
|
| 468 |
parser.add_argument("--cache_dir", type=str, default=None)
|
| 469 |
parser.add_argument("--offload_t5", type=bool, default=False)
|
| 470 |
parser.add_argument("--max_concurrent", type=int, default=1, help="Maximum concurrent generation tasks")
|
|
|
|
| 489 |
os.makedirs(cache_dir, exist_ok=True)
|
| 490 |
|
| 491 |
# Initialize GenerationSystem
|
| 492 |
+
device = torch.device("cpu")
|
| 493 |
generation_system = GenerationSystem(ckpt_path=ckpt_path, device=device)
|
| 494 |
|
| 495 |
# Create Gradio interface
|
| 496 |
with gr.Blocks(title="FlashWorld Backend") as demo:
|
| 497 |
+
gr.Markdown("FlashWorld Generation Backend — API only. This service powers the FlashWorld Web Demo and is intended for programmatic/API access. The UI is intentionally hidden.")
|
|
|
|
| 498 |
|
| 499 |
+
with gr.Row(visible=False):
|
| 500 |
with gr.Column():
|
| 501 |
json_input = gr.Textbox(
|
| 502 |
label="JSON Input",
|
|
|
|
| 515 |
)
|
| 516 |
|
| 517 |
# File download section
|
| 518 |
+
gr.Markdown("## File Download", visible=False)
|
| 519 |
+
with gr.Row(visible=False):
|
| 520 |
file_id_input = gr.Textbox(
|
| 521 |
label="File ID",
|
| 522 |
placeholder="Enter file ID to download..."
|
| 523 |
)
|
| 524 |
+
download_btn = gr.Button("Download SPZ File")
|
| 525 |
download_output = gr.File(label="Downloaded File")
|
| 526 |
+
|
| 527 |
+
|
| 528 |
+
def gradio_generate(json_input):
|
| 529 |
+
"""
|
| 530 |
+
Gradio interface function that processes JSON input and returns JSON output
|
| 531 |
+
"""
|
| 532 |
+
try:
|
| 533 |
+
# Parse JSON input
|
| 534 |
+
if isinstance(json_input, str):
|
| 535 |
+
data = json.loads(json_input)
|
| 536 |
+
else:
|
| 537 |
+
data = json_input
|
| 538 |
+
|
| 539 |
+
# Process the request
|
| 540 |
+
result = process_generation_request(data, generation_system, cache_dir)
|
| 541 |
+
|
| 542 |
+
# Return JSON response
|
| 543 |
+
return json.dumps(result, indent=2)
|
| 544 |
+
|
| 545 |
+
except Exception as e:
|
| 546 |
+
error_response = {'error': f'JSON processing error: {str(e)}'}
|
| 547 |
+
return json.dumps(error_response, indent=2)
|
| 548 |
+
|
| 549 |
+
def download_file(file_id):
|
| 550 |
+
"""
|
| 551 |
+
Download generated SPZ file
|
| 552 |
+
"""
|
| 553 |
+
file_path = os.path.join(cache_dir, f'{file_id}.spz')
|
| 554 |
+
|
| 555 |
+
if not os.path.exists(file_path):
|
| 556 |
+
return None
|
| 557 |
+
|
| 558 |
+
return file_path
|
| 559 |
+
|
| 560 |
+
def gradio_delete(file_id):
|
| 561 |
+
"""
|
| 562 |
+
Delete generated artifacts by file_id (.spz/.json/.mp4)
|
| 563 |
+
"""
|
| 564 |
+
deleted = False
|
| 565 |
+
try:
|
| 566 |
+
for ext in (".spz", ".json", ".mp4"):
|
| 567 |
+
p = os.path.join(cache_dir, f"{file_id}{ext}")
|
| 568 |
+
if os.path.exists(p):
|
| 569 |
+
try:
|
| 570 |
+
os.remove(p)
|
| 571 |
+
deleted = True
|
| 572 |
+
except Exception:
|
| 573 |
+
pass
|
| 574 |
+
return {"success": True, "deleted": deleted}
|
| 575 |
+
except Exception as e:
|
| 576 |
+
return {"success": False, "error": str(e)}
|
| 577 |
|
| 578 |
# Event handlers
|
| 579 |
generate_btn.click(
|
| 580 |
+
fn=gradio_generate,
|
| 581 |
inputs=[json_input],
|
| 582 |
outputs=[json_output]
|
| 583 |
)
|
| 584 |
|
| 585 |
download_btn.click(
|
| 586 |
+
fn=download_file,
|
| 587 |
inputs=[file_id_input],
|
| 588 |
outputs=[download_output]
|
| 589 |
)
|
| 590 |
+
|
| 591 |
+
# Hidden API hook for deletion to expose /gradio_api/call/gradio_delete
|
| 592 |
+
_hidden_delete_in = gr.Textbox(visible=False)
|
| 593 |
+
_hidden_delete_btn = gr.Button(visible=False)
|
| 594 |
+
_hidden_delete_btn.click(fn=gradio_delete, inputs=[_hidden_delete_in], outputs=[])
|
| 595 |
|
| 596 |
# Example JSON format
|
| 597 |
gr.Markdown("""
|
|
|
|
| 622 |
"image_index": 0
|
| 623 |
}
|
| 624 |
```
|
| 625 |
+
""", visible=False)
|
| 626 |
+
|
| 627 |
+
# Background periodic cleanup thread (no FastAPI app lifecycle)
|
| 628 |
+
def _cleanup_loop(directory: str, max_age_seconds: int = 15 * 60, interval_seconds: int = 300):
|
| 629 |
+
while True:
|
| 630 |
+
try:
|
| 631 |
+
now = time.time()
|
| 632 |
+
for name in os.listdir(directory):
|
| 633 |
+
path = os.path.join(directory, name)
|
| 634 |
+
try:
|
| 635 |
+
if os.path.isfile(path):
|
| 636 |
+
mtime = os.path.getmtime(path)
|
| 637 |
+
if (now - mtime) > max_age_seconds:
|
| 638 |
+
try:
|
| 639 |
+
os.remove(path)
|
| 640 |
+
except Exception:
|
| 641 |
+
pass
|
| 642 |
+
except Exception:
|
| 643 |
+
pass
|
| 644 |
+
except Exception:
|
| 645 |
+
pass
|
| 646 |
+
time.sleep(interval_seconds)
|
| 647 |
+
|
| 648 |
+
threading.Thread(target=_cleanup_loop, args=(cache_dir,), daemon=True).start()
|
| 649 |
+
|
| 650 |
+
demo.launch(allowed_paths=[cache_dir])
|
index.html
CHANGED
|
@@ -67,7 +67,7 @@
|
|
| 67 |
.content-container {
|
| 68 |
display: flex;
|
| 69 |
flex: 1;
|
| 70 |
-
overflow:
|
| 71 |
}
|
| 72 |
|
| 73 |
.left-panel {
|
|
@@ -76,6 +76,7 @@
|
|
| 76 |
border-right: 1px solid rgba(255, 255, 255, 0.1);
|
| 77 |
padding: 20px;
|
| 78 |
overflow-y: auto;
|
|
|
|
| 79 |
flex-shrink: 0;
|
| 80 |
}
|
| 81 |
|
|
@@ -86,6 +87,7 @@
|
|
| 86 |
display: flex;
|
| 87 |
justify-content: center;
|
| 88 |
align-items: center;
|
|
|
|
| 89 |
}
|
| 90 |
|
| 91 |
.right-panel {
|
|
@@ -95,6 +97,7 @@
|
|
| 95 |
padding: 20px;
|
| 96 |
overflow-y: auto;
|
| 97 |
flex-shrink: 0;
|
|
|
|
| 98 |
}
|
| 99 |
|
| 100 |
.guidance {
|
|
@@ -222,6 +225,7 @@
|
|
| 222 |
font-size: 12px;
|
| 223 |
cursor: default;
|
| 224 |
user-select: none;
|
|
|
|
| 225 |
}
|
| 226 |
.info-tip .tooltip {
|
| 227 |
display: none;
|
|
@@ -229,16 +233,17 @@
|
|
| 229 |
left: 0;
|
| 230 |
top: calc(100% + 8px); /* show below the icon */
|
| 231 |
transform: none;
|
| 232 |
-
background: rgba(0,0,0,0.
|
| 233 |
color: #e5e7eb;
|
| 234 |
-
border: 1px solid rgba(255,255,255,0.
|
| 235 |
border-radius: 8px;
|
| 236 |
padding: 10px 12px;
|
| 237 |
font-size: 12px;
|
| 238 |
-
width:
|
| 239 |
white-space: normal;
|
| 240 |
-
z-index:
|
| 241 |
-
box-shadow: 0
|
|
|
|
| 242 |
}
|
| 243 |
.info-tip:hover .tooltip {
|
| 244 |
display: block;
|
|
@@ -430,8 +435,8 @@
|
|
| 430 |
<script type="importmap">
|
| 431 |
{
|
| 432 |
"imports": {
|
| 433 |
-
"three": "https://cdnjs.cloudflare.com/ajax/libs/three.js/0.
|
| 434 |
-
"@sparkjsdev/spark": "https://sparkjs.dev/releases/spark/0.1.
|
| 435 |
"lil-gui": "https://cdn.jsdelivr.net/npm/[email protected]/+esm"
|
| 436 |
}
|
| 437 |
}
|
|
@@ -469,6 +474,7 @@
|
|
| 469 |
<div class="step">
|
| 470 |
<h3>1. Configure</h3>
|
| 471 |
<p>Set FOV and Resolution and Click "Fix Configurations"</p>
|
|
|
|
| 472 |
</div>
|
| 473 |
|
| 474 |
|
|
@@ -640,6 +646,31 @@
|
|
| 640 |
function updateStatus(message, cameraCount = null) {
|
| 641 |
const cameraText = cameraCount !== null ? `Cameras: ${cameraCount}` : `Cameras: ${cameraParams.length}`;
|
| 642 |
statusBar.textContent = `${message} | ${cameraText} | Status: ${fixGenerationFOV ? 'Ready to record' : 'Configure settings'}`;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 643 |
}
|
| 644 |
|
| 645 |
// Show/hide loading
|
|
@@ -685,7 +716,151 @@
|
|
| 685 |
if (progressText) progressText.textContent = text;
|
| 686 |
}
|
| 687 |
|
| 688 |
-
//
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 689 |
|
| 690 |
// Hide download progress
|
| 691 |
function hideDownloadProgress() {
|
|
@@ -741,8 +916,9 @@
|
|
| 741 |
|
| 742 |
// GUI Options - declare early
|
| 743 |
const guiOptions = {
|
| 744 |
-
//
|
| 745 |
BackendAddress: `${window.location.protocol}//${window.location.hostname}:7860`,
|
|
|
|
| 746 |
FOV: 60,
|
| 747 |
LoadFromJson: () => {
|
| 748 |
const jsonInput = document.querySelector("#json-input");
|
|
@@ -805,11 +981,6 @@
|
|
| 805 |
generateCameraTrajectory(guiOptions.templateType);
|
| 806 |
},
|
| 807 |
saveTrajectoryToJson: () => {
|
| 808 |
-
if (cameraParams.length === 0) {
|
| 809 |
-
updateStatus('No cameras to save.', cameraParams.length);
|
| 810 |
-
console.warn('No cameras to save');
|
| 811 |
-
return;
|
| 812 |
-
}
|
| 813 |
|
| 814 |
// Build JSON payload compatible with loader
|
| 815 |
const [nStr, hStr, wStr] = guiOptions.Resolution.split('x');
|
|
@@ -913,14 +1084,15 @@
|
|
| 913 |
console.log('Interpolated cameras:', interpolatedCameras.length);
|
| 914 |
updateStatus('Sending request to backend...', cameraParams.length);
|
| 915 |
|
| 916 |
-
// Gradio
|
|
|
|
| 917 |
const requestData = {
|
| 918 |
image_prompt: inputImageBase64 ? inputImageBase64 : "",
|
| 919 |
text_prompt: guiOptions.inputTextPrompt,
|
| 920 |
image_index: 0,
|
| 921 |
resolution: [
|
| 922 |
-
parseInt(guiOptions.Resolution.split('x')[0]),
|
| 923 |
-
parseInt(guiOptions.Resolution.split('x')[1]),
|
| 924 |
parseInt(guiOptions.Resolution.split('x')[2])
|
| 925 |
],
|
| 926 |
cameras: interpolatedCameras.map(cam => ({
|
|
@@ -937,191 +1109,125 @@
|
|
| 937 |
}))
|
| 938 |
};
|
| 939 |
|
| 940 |
-
|
| 941 |
-
fetch(guiOptions.BackendAddress + '/gradio_api/call/gradio_generate', {
|
| 942 |
method: 'POST',
|
| 943 |
headers: { 'Content-Type': 'application/json' },
|
| 944 |
mode: 'cors',
|
| 945 |
-
body: JSON.stringify({
|
| 946 |
-
data: [JSON.stringify(requestData)]
|
| 947 |
-
})
|
| 948 |
})
|
| 949 |
.then(response => response.json())
|
| 950 |
.then(data => {
|
| 951 |
-
|
| 952 |
-
|
| 953 |
-
|
| 954 |
-
|
| 955 |
-
|
| 956 |
-
|
| 957 |
-
|
| 958 |
-
|
| 959 |
-
|
| 960 |
-
|
| 961 |
-
|
| 962 |
-
|
| 963 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 964 |
})
|
| 965 |
-
.then(
|
| 966 |
-
|
| 967 |
-
|
| 968 |
-
|
| 969 |
-
|
| 970 |
-
|
| 971 |
-
|
| 972 |
-
|
| 973 |
-
|
| 974 |
-
|
| 975 |
-
|
| 976 |
-
|
| 977 |
-
|
| 978 |
-
|
| 979 |
-
|
| 980 |
-
|
| 981 |
-
|
| 982 |
-
|
| 983 |
-
if (eventType === 'complete' && dataContent) {
|
| 984 |
-
// 解析JSON数据
|
| 985 |
-
const resultData = JSON.parse(dataContent);
|
| 986 |
-
console.log('Generation result:', resultData);
|
| 987 |
-
|
| 988 |
-
// 解析生成结果
|
| 989 |
-
if (resultData && resultData.length > 0) {
|
| 990 |
-
const responseData = JSON.parse(resultData[0]);
|
| 991 |
-
console.log('Gradio generation successful:', responseData);
|
| 992 |
-
|
| 993 |
-
if (responseData.success && responseData.download_url) {
|
| 994 |
-
console.log('Generation time:', responseData.generation_time, 'seconds');
|
| 995 |
-
console.log('File size:', responseData.file_size, 'bytes');
|
| 996 |
-
|
| 997 |
-
// 显示生成信息
|
| 998 |
-
showGenerationInfo(responseData.generation_time, responseData.file_size);
|
| 999 |
-
showDownloadProgress();
|
| 1000 |
-
updateStatus('Downloading generated scene...', cameraParams.length);
|
| 1001 |
-
|
| 1002 |
-
// 现在下载文件,也需要两步:先获取下载的EVENT_ID,再下载文件
|
| 1003 |
-
return fetch(guiOptions.BackendAddress + '/gradio_api/call/download_file', {
|
| 1004 |
-
method: 'POST',
|
| 1005 |
-
headers: { 'Content-Type': 'application/json' },
|
| 1006 |
-
body: JSON.stringify({
|
| 1007 |
-
data: [responseData.file_id]
|
| 1008 |
-
})
|
| 1009 |
-
})
|
| 1010 |
-
.then(response => response.json())
|
| 1011 |
-
.then(downloadEventData => {
|
| 1012 |
-
console.log('Download EVENT_ID:', downloadEventData.event_id);
|
| 1013 |
-
|
| 1014 |
-
// 使用下载的EVENT_ID获取文件信息(SSE格式)
|
| 1015 |
-
return fetch(guiOptions.BackendAddress + `/gradio_api/call/download_file/${downloadEventData.event_id}`)
|
| 1016 |
-
.then(response => {
|
| 1017 |
-
if (!response.ok) {
|
| 1018 |
-
throw new Error(`HTTP error! status: ${response.status}`);
|
| 1019 |
-
}
|
| 1020 |
-
return response.text();
|
| 1021 |
-
})
|
| 1022 |
-
.then(sseText => {
|
| 1023 |
-
console.log('Download SSE response:', sseText);
|
| 1024 |
-
|
| 1025 |
-
// 解析SSE格式的响应
|
| 1026 |
-
const lines = sseText.split('\n');
|
| 1027 |
-
let eventType = null;
|
| 1028 |
-
let dataContent = null;
|
| 1029 |
-
|
| 1030 |
-
for (const line of lines) {
|
| 1031 |
-
if (line.startsWith('event: ')) {
|
| 1032 |
-
eventType = line.substring(7);
|
| 1033 |
-
} else if (line.startsWith('data: ')) {
|
| 1034 |
-
dataContent = line.substring(6);
|
| 1035 |
-
}
|
| 1036 |
-
}
|
| 1037 |
-
|
| 1038 |
-
console.log('Download event type:', eventType, 'Data:', dataContent);
|
| 1039 |
-
|
| 1040 |
-
if (eventType === 'complete' && dataContent) {
|
| 1041 |
-
// 解析文件信息
|
| 1042 |
-
const fileData = JSON.parse(dataContent);
|
| 1043 |
-
console.log('File data:', fileData);
|
| 1044 |
-
|
| 1045 |
-
if (fileData && fileData.length > 0 && fileData[0].url) {
|
| 1046 |
-
const fileUrl = fileData[0].url;
|
| 1047 |
-
console.log('File URL:', fileUrl);
|
| 1048 |
-
|
| 1049 |
-
// 从返回的URL下载实际文件
|
| 1050 |
-
return fetch(fileUrl)
|
| 1051 |
-
.then(response => {
|
| 1052 |
-
if (!response.ok) {
|
| 1053 |
-
throw new Error(`HTTP error! status: ${response.status}`);
|
| 1054 |
-
}
|
| 1055 |
-
|
| 1056 |
-
const contentLength = response.headers.get('content-length');
|
| 1057 |
-
const total = parseInt(contentLength, 10);
|
| 1058 |
-
let loaded = 0;
|
| 1059 |
-
|
| 1060 |
-
const reader = response.body.getReader();
|
| 1061 |
-
const chunks = [];
|
| 1062 |
-
|
| 1063 |
-
function pump() {
|
| 1064 |
-
return reader.read().then(({ done, value }) => {
|
| 1065 |
-
if (done) {
|
| 1066 |
-
return new Blob(chunks);
|
| 1067 |
-
}
|
| 1068 |
-
|
| 1069 |
-
chunks.push(value);
|
| 1070 |
-
loaded += value.length;
|
| 1071 |
-
|
| 1072 |
-
if (total) {
|
| 1073 |
-
const percentage = (loaded / total) * 100;
|
| 1074 |
-
updateProgressBar(percentage);
|
| 1075 |
-
}
|
| 1076 |
-
|
| 1077 |
-
return pump();
|
| 1078 |
-
});
|
| 1079 |
-
}
|
| 1080 |
-
|
| 1081 |
-
return pump().then(blob => {
|
| 1082 |
-
const url = URL.createObjectURL(blob);
|
| 1083 |
-
return { url };
|
| 1084 |
-
});
|
| 1085 |
-
});
|
| 1086 |
-
} else {
|
| 1087 |
-
throw new Error('Invalid file data format from Gradio');
|
| 1088 |
-
}
|
| 1089 |
-
} else {
|
| 1090 |
-
throw new Error('Gradio download SSE response not complete or missing data');
|
| 1091 |
-
}
|
| 1092 |
-
});
|
| 1093 |
-
});
|
| 1094 |
-
} else {
|
| 1095 |
-
throw new Error('Gradio generation failed: ' + (responseData.error || 'Unknown error'));
|
| 1096 |
}
|
| 1097 |
-
|
| 1098 |
-
|
| 1099 |
-
|
| 1100 |
-
|
| 1101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1102 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1103 |
});
|
| 1104 |
-
|
| 1105 |
-
throw new Error('Invalid Gradio response format - no event_id');
|
| 1106 |
-
}
|
| 1107 |
})
|
| 1108 |
.then(data => {
|
| 1109 |
-
if (data.url) {
|
| 1110 |
updateStatus('Loading 3D scene...', cameraParams.length);
|
| 1111 |
-
|
| 1112 |
-
// Remove the instruction splat when generation is complete
|
| 1113 |
if (instructionSplat) {
|
| 1114 |
scene.remove(instructionSplat);
|
| 1115 |
console.log('Instruction splat removed');
|
| 1116 |
}
|
| 1117 |
-
|
| 1118 |
const GeneratedSplat = new SplatMesh({ url: data.url });
|
| 1119 |
scene.add(GeneratedSplat);
|
| 1120 |
-
currentGeneratedSplat = GeneratedSplat;
|
| 1121 |
console.log('3D scene loaded successfully!');
|
| 1122 |
updateStatus('Scene generated successfully!', cameraParams.length);
|
| 1123 |
hideDownloadProgress();
|
| 1124 |
showLoading(false);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1125 |
}
|
| 1126 |
})
|
| 1127 |
.catch(error => {
|
|
@@ -1499,7 +1605,8 @@
|
|
| 1499 |
|
| 1500 |
// Step 1: Configure Generation Settings
|
| 1501 |
const step1Folder = gui.addFolder('1. Configure Settings');
|
| 1502 |
-
step1Folder.add(guiOptions, "BackendAddress").name("
|
|
|
|
| 1503 |
|
| 1504 |
// FOV和Resolution控制器,初始时启用
|
| 1505 |
const fovController = step1Folder.add(guiOptions, "FOV", 0, 120, 1).name("FOV").onChange((value) => {
|
|
@@ -1546,6 +1653,9 @@
|
|
| 1546 |
const loadTrajectoryController = trajectoryFolder.add(guiOptions, "LoadTrajectoryFromJson").name("Load from JSON");
|
| 1547 |
const saveTrajectoryController = trajectoryFolder.add(guiOptions, "saveTrajectoryToJson").name("Save Trajectory");
|
| 1548 |
|
|
|
|
|
|
|
|
|
|
| 1549 |
// 清理相机按钮
|
| 1550 |
const clearAllCamerasController = trajectoryFolder.add(guiOptions, "clearAllCameras").name("Clear All Cameras");
|
| 1551 |
|
|
@@ -1612,6 +1722,7 @@
|
|
| 1612 |
|
| 1613 |
// Store controllers globally so they can be accessed from guiOptions
|
| 1614 |
window.fixGenerationFOVController = fixGenerationFOVController;
|
|
|
|
| 1615 |
|
| 1616 |
// Step 3: Add Scene Prompts
|
| 1617 |
const step3Folder = gui.addFolder('3. Add Scene Prompts');
|
|
@@ -2025,6 +2136,7 @@
|
|
| 2025 |
if (loadTrajectoryOnly) {
|
| 2026 |
updateStatus(`Trajectory loaded: ${cameras.length} cameras`, cameraParams.length);
|
| 2027 |
} else {
|
|
|
|
| 2028 |
}
|
| 2029 |
} catch (error) {
|
| 2030 |
console.error("JSON data processing error:", error);
|
|
|
|
| 67 |
.content-container {
|
| 68 |
display: flex;
|
| 69 |
flex: 1;
|
| 70 |
+
overflow: visible; /* Allow tooltips to extend beyond container */
|
| 71 |
}
|
| 72 |
|
| 73 |
.left-panel {
|
|
|
|
| 76 |
border-right: 1px solid rgba(255, 255, 255, 0.1);
|
| 77 |
padding: 20px;
|
| 78 |
overflow-y: auto;
|
| 79 |
+
overflow-x: visible; /* Allow tooltips to extend beyond panel */
|
| 80 |
flex-shrink: 0;
|
| 81 |
}
|
| 82 |
|
|
|
|
| 87 |
display: flex;
|
| 88 |
justify-content: center;
|
| 89 |
align-items: center;
|
| 90 |
+
z-index: 1; /* Lower z-index to allow tooltips to appear above */
|
| 91 |
}
|
| 92 |
|
| 93 |
.right-panel {
|
|
|
|
| 97 |
padding: 20px;
|
| 98 |
overflow-y: auto;
|
| 99 |
flex-shrink: 0;
|
| 100 |
+
z-index: 1; /* Lower z-index to allow tooltips to appear above */
|
| 101 |
}
|
| 102 |
|
| 103 |
.guidance {
|
|
|
|
| 225 |
font-size: 12px;
|
| 226 |
cursor: default;
|
| 227 |
user-select: none;
|
| 228 |
+
z-index: 100000; /* Ensure the tip itself is above everything */
|
| 229 |
}
|
| 230 |
.info-tip .tooltip {
|
| 231 |
display: none;
|
|
|
|
| 233 |
left: 0;
|
| 234 |
top: calc(100% + 8px); /* show below the icon */
|
| 235 |
transform: none;
|
| 236 |
+
background: rgba(0,0,0,0.95);
|
| 237 |
color: #e5e7eb;
|
| 238 |
+
border: 1px solid rgba(255,255,255,0.2);
|
| 239 |
border-radius: 8px;
|
| 240 |
padding: 10px 12px;
|
| 241 |
font-size: 12px;
|
| 242 |
+
width: 480px;
|
| 243 |
white-space: normal;
|
| 244 |
+
z-index: 999999; /* Even higher z-index to ensure it's above everything */
|
| 245 |
+
box-shadow: 0 8px 24px rgba(0,0,0,0.6);
|
| 246 |
+
text-align: left;
|
| 247 |
}
|
| 248 |
.info-tip:hover .tooltip {
|
| 249 |
display: block;
|
|
|
|
| 435 |
<script type="importmap">
|
| 436 |
{
|
| 437 |
"imports": {
|
| 438 |
+
"three": "https://cdnjs.cloudflare.com/ajax/libs/three.js/0.178.0/three.module.js",
|
| 439 |
+
"@sparkjsdev/spark": "https://sparkjs.dev/releases/spark/0.1.9/spark.module.js",
|
| 440 |
"lil-gui": "https://cdn.jsdelivr.net/npm/[email protected]/+esm"
|
| 441 |
}
|
| 442 |
}
|
|
|
|
| 474 |
<div class="step">
|
| 475 |
<h3>1. Configure</h3>
|
| 476 |
<p>Set FOV and Resolution and Click "Fix Configurations"</p>
|
| 477 |
+
<p><strong>Important: You also need to specify your Hugging Face Access Token with READ permission to use the online free ZeroGPU service.</strong></p>
|
| 478 |
</div>
|
| 479 |
|
| 480 |
|
|
|
|
| 646 |
function updateStatus(message, cameraCount = null) {
|
| 647 |
const cameraText = cameraCount !== null ? `Cameras: ${cameraCount}` : `Cameras: ${cameraParams.length}`;
|
| 648 |
statusBar.textContent = `${message} | ${cameraText} | Status: ${fixGenerationFOV ? 'Ready to record' : 'Configure settings'}`;
|
| 649 |
+
|
| 650 |
+
// Update save trajectory button state
|
| 651 |
+
updateSaveTrajectoryButton();
|
| 652 |
+
}
|
| 653 |
+
|
| 654 |
+
// Update save trajectory button state based on camera count
|
| 655 |
+
function updateSaveTrajectoryButton() {
|
| 656 |
+
if (window.saveTrajectoryController) {
|
| 657 |
+
if (cameraParams.length >= 2) {
|
| 658 |
+
window.saveTrajectoryController.enable();
|
| 659 |
+
} else {
|
| 660 |
+
window.saveTrajectoryController.disable();
|
| 661 |
+
}
|
| 662 |
+
}
|
| 663 |
+
}
|
| 664 |
+
|
| 665 |
+
// Auth-aware fetch helper that injects Authorization header when HF_TOKEN is set
|
| 666 |
+
function fetchWithAuth(url, options = {}) {
|
| 667 |
+
const mergedOptions = { ...options };
|
| 668 |
+
const headers = new Headers(options && options.headers ? options.headers : undefined);
|
| 669 |
+
if (guiOptions && guiOptions.HF_TOKEN && String(guiOptions.HF_TOKEN).trim().length > 0) {
|
| 670 |
+
headers.set('Authorization', `Bearer ${guiOptions.HF_TOKEN}`);
|
| 671 |
+
}
|
| 672 |
+
mergedOptions.headers = headers;
|
| 673 |
+
return fetch(url, mergedOptions);
|
| 674 |
}
|
| 675 |
|
| 676 |
// Show/hide loading
|
|
|
|
| 716 |
if (progressText) progressText.textContent = text;
|
| 717 |
}
|
| 718 |
|
| 719 |
+
// ==============
|
| 720 |
+
// Queue handling
|
| 721 |
+
// ==============
|
| 722 |
+
let queuePollTimer = null;
|
| 723 |
+
let currentTaskId = null;
|
| 724 |
+
let initialQueuePosition = null;
|
| 725 |
+
let latestGenerationTime = null;
|
| 726 |
+
let lastDownloadPct = 0;
|
| 727 |
+
let lastDownloadUpdateTs = 0;
|
| 728 |
+
|
| 729 |
+
function showQueueWaiting(position, runningCount, queuedCount) {
|
| 730 |
+
// Use only the progress bar to show queue progress (from initial position to 0)
|
| 731 |
+
showDownloadProgress();
|
| 732 |
+
if (initialQueuePosition === null) {
|
| 733 |
+
// Initialize from first seen position; ensure >= 1 so 0 -> 100%
|
| 734 |
+
const initPos = (typeof position === 'number') ? position : 0;
|
| 735 |
+
initialQueuePosition = Math.max(initPos, 1);
|
| 736 |
+
}
|
| 737 |
+
const percent = initialQueuePosition && initialQueuePosition > 0
|
| 738 |
+
? Math.max(0, Math.min(100, ((initialQueuePosition - (position || 0)) / initialQueuePosition) * 100))
|
| 739 |
+
: 0;
|
| 740 |
+
updateProgressBar(percent);
|
| 741 |
+
const totalWaiting = (position || 0) + (queuedCount || 0);
|
| 742 |
+
if (position !== null && position !== undefined) {
|
| 743 |
+
const pctText = `${Math.round(percent)}%`;
|
| 744 |
+
if (totalWaiting > 0) {
|
| 745 |
+
setProgressLabel(`Queued ${position}/${totalWaiting} (${pctText})`);
|
| 746 |
+
} else {
|
| 747 |
+
setProgressLabel(`Queued ${position} (${pctText})`);
|
| 748 |
+
}
|
| 749 |
+
} else {
|
| 750 |
+
setProgressLabel('Queued');
|
| 751 |
+
}
|
| 752 |
+
}
|
| 753 |
+
|
| 754 |
+
async function pollTaskUntilReady(taskId) {
|
| 755 |
+
currentTaskId = taskId;
|
| 756 |
+
initialQueuePosition = null;
|
| 757 |
+
if (queuePollTimer) {
|
| 758 |
+
clearInterval(queuePollTimer);
|
| 759 |
+
queuePollTimer = null;
|
| 760 |
+
}
|
| 761 |
+
const queueStartTs = Date.now();
|
| 762 |
+
|
| 763 |
+
const pollOnce = async () => {
|
| 764 |
+
try {
|
| 765 |
+
const resp = await fetchWithAuth(`${guiOptions.BackendAddress}/task/${taskId}`);
|
| 766 |
+
if (!resp.ok) return;
|
| 767 |
+
const info = await resp.json();
|
| 768 |
+
if (!info || !info.success) return;
|
| 769 |
+
|
| 770 |
+
const pos = info.queue && typeof info.queue.position === 'number' ? info.queue.position : 0;
|
| 771 |
+
const running = info.queue ? info.queue.running_count : 0;
|
| 772 |
+
const queued = info.queue ? info.queue.queued_count : 0;
|
| 773 |
+
if (info.status === 'queued' || info.status === 'running') {
|
| 774 |
+
// Only progress bar; set stage label
|
| 775 |
+
if (info.status === 'queued') {
|
| 776 |
+
showQueueWaiting(pos, running, queued);
|
| 777 |
+
} else {
|
| 778 |
+
// Transitioned to running: finalize queue progress visually
|
| 779 |
+
updateProgressBar(100);
|
| 780 |
+
showDownloadProgress();
|
| 781 |
+
setProgressLabel('Generating...');
|
| 782 |
+
}
|
| 783 |
+
}
|
| 784 |
+
|
| 785 |
+
if (info.status === 'completed' && info.download_url) {
|
| 786 |
+
clearInterval(queuePollTimer);
|
| 787 |
+
queuePollTimer = null;
|
| 788 |
+
latestGenerationTime = typeof info.generation_time === 'number' ? info.generation_time : null;
|
| 789 |
+
// Proceed to download the generated file like the normal path
|
| 790 |
+
updateStatus('Downloading generated scene...', cameraParams.length);
|
| 791 |
+
const response = await fetchWithAuth(guiOptions.BackendAddress + info.download_url);
|
| 792 |
+
if (!response.ok) throw new Error(`HTTP error! status: ${response.status}`);
|
| 793 |
+
const contentLength = response.headers.get('content-length');
|
| 794 |
+
const total = parseInt(contentLength || '0', 10);
|
| 795 |
+
// Show generation info immediately once we know it and total size from headers
|
| 796 |
+
showGenerationInfo(latestGenerationTime || 0, total);
|
| 797 |
+
let loaded = 0;
|
| 798 |
+
const reader = response.body.getReader();
|
| 799 |
+
const chunks = [];
|
| 800 |
+
updateProgressBar(0);
|
| 801 |
+
setProgressLabel('Downloading 0%');
|
| 802 |
+
lastDownloadPct = 0;
|
| 803 |
+
lastDownloadUpdateTs = 0;
|
| 804 |
+
while (true) {
|
| 805 |
+
const { done, value } = await reader.read();
|
| 806 |
+
if (done) break;
|
| 807 |
+
chunks.push(value);
|
| 808 |
+
loaded += value.length;
|
| 809 |
+
if (total) {
|
| 810 |
+
const pct = Math.min(100, (loaded / total) * 100);
|
| 811 |
+
const now = Date.now();
|
| 812 |
+
const rounded = Math.round(pct);
|
| 813 |
+
// Throttle and enforce monotonic increase
|
| 814 |
+
if (rounded > Math.round(lastDownloadPct) || (now - lastDownloadUpdateTs) > 200) {
|
| 815 |
+
lastDownloadPct = Math.max(lastDownloadPct, pct);
|
| 816 |
+
updateProgressBar(lastDownloadPct);
|
| 817 |
+
setProgressLabel(`Downloading ${Math.round(lastDownloadPct)}%`);
|
| 818 |
+
lastDownloadUpdateTs = now;
|
| 819 |
+
}
|
| 820 |
+
}
|
| 821 |
+
}
|
| 822 |
+
|
| 823 |
+
if (instructionSplat) {
|
| 824 |
+
scene.remove(instructionSplat);
|
| 825 |
+
console.log('Instruction splat removed');
|
| 826 |
+
instructionSplat = null;
|
| 827 |
+
}
|
| 828 |
+
|
| 829 |
+
const blob = new Blob(chunks);
|
| 830 |
+
const url = URL.createObjectURL(blob);
|
| 831 |
+
// Continue to load the splat
|
| 832 |
+
updateStatus('Loading generated scene...', cameraParams.length);
|
| 833 |
+
|
| 834 |
+
const GeneratedSplat = new SplatMesh({ url });
|
| 835 |
+
scene.add(GeneratedSplat);
|
| 836 |
+
currentGeneratedSplat = GeneratedSplat;
|
| 837 |
+
updateStatus('Scene generated successfully!', cameraParams.length);
|
| 838 |
+
// Show generation time and total file size (MB)
|
| 839 |
+
showGenerationInfo(latestGenerationTime || 0, total || blob.size);
|
| 840 |
+
// Notify backend to delete the server file after client has downloaded it
|
| 841 |
+
try {
|
| 842 |
+
if (info.file_id) {
|
| 843 |
+
const resp = await fetchWithAuth(`${guiOptions.BackendAddress}/delete/${info.file_id}`, { method: 'POST' });
|
| 844 |
+
if (!resp.ok) console.warn('Delete notify failed');
|
| 845 |
+
}
|
| 846 |
+
} catch (e) {
|
| 847 |
+
console.warn('Delete notify error', e);
|
| 848 |
+
}
|
| 849 |
+
hideDownloadProgress();
|
| 850 |
+
showLoading(false);
|
| 851 |
+
} else if (info.status === 'failed') {
|
| 852 |
+
clearInterval(queuePollTimer);
|
| 853 |
+
queuePollTimer = null;
|
| 854 |
+
throw new Error(info.error || 'Generation failed');
|
| 855 |
+
}
|
| 856 |
+
} catch (e) {
|
| 857 |
+
console.debug('Polling error:', e);
|
| 858 |
+
}
|
| 859 |
+
};
|
| 860 |
+
|
| 861 |
+
await pollOnce();
|
| 862 |
+
queuePollTimer = setInterval(pollOnce, 2000);
|
| 863 |
+
}
|
| 864 |
|
| 865 |
// Hide download progress
|
| 866 |
function hideDownloadProgress() {
|
|
|
|
| 916 |
|
| 917 |
// GUI Options - declare early
|
| 918 |
const guiOptions = {
|
| 919 |
+
// 后端地址,默认为本页面ip
|
| 920 |
BackendAddress: `${window.location.protocol}//${window.location.hostname}:7860`,
|
| 921 |
+
HF_TOKEN: "",
|
| 922 |
FOV: 60,
|
| 923 |
LoadFromJson: () => {
|
| 924 |
const jsonInput = document.querySelector("#json-input");
|
|
|
|
| 981 |
generateCameraTrajectory(guiOptions.templateType);
|
| 982 |
},
|
| 983 |
saveTrajectoryToJson: () => {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 984 |
|
| 985 |
// Build JSON payload compatible with loader
|
| 986 |
const [nStr, hStr, wStr] = guiOptions.Resolution.split('x');
|
|
|
|
| 1084 |
console.log('Interpolated cameras:', interpolatedCameras.length);
|
| 1085 |
updateStatus('Sending request to backend...', cameraParams.length);
|
| 1086 |
|
| 1087 |
+
// 调用 Gradio 后端:POST 到 /gradio_api/call/gradio_generate,然后通过 SSE 获取结果
|
| 1088 |
+
const requestUrl = guiOptions.BackendAddress + '/gradio_api/call/gradio_generate';
|
| 1089 |
const requestData = {
|
| 1090 |
image_prompt: inputImageBase64 ? inputImageBase64 : "",
|
| 1091 |
text_prompt: guiOptions.inputTextPrompt,
|
| 1092 |
image_index: 0,
|
| 1093 |
resolution: [
|
| 1094 |
+
parseInt(guiOptions.Resolution.split('x')[0]),
|
| 1095 |
+
parseInt(guiOptions.Resolution.split('x')[1]),
|
| 1096 |
parseInt(guiOptions.Resolution.split('x')[2])
|
| 1097 |
],
|
| 1098 |
cameras: interpolatedCameras.map(cam => ({
|
|
|
|
| 1109 |
}))
|
| 1110 |
};
|
| 1111 |
|
| 1112 |
+
fetchWithAuth(requestUrl, {
|
|
|
|
| 1113 |
method: 'POST',
|
| 1114 |
headers: { 'Content-Type': 'application/json' },
|
| 1115 |
mode: 'cors',
|
| 1116 |
+
body: JSON.stringify({ data: [JSON.stringify(requestData)] })
|
|
|
|
|
|
|
| 1117 |
})
|
| 1118 |
.then(response => response.json())
|
| 1119 |
.then(data => {
|
| 1120 |
+
// Gradio 总是返回 event_id,需要使用 SSE 获取生成结果
|
| 1121 |
+
if (!data || !data.event_id) {
|
| 1122 |
+
throw new Error('Invalid Gradio response format - no event_id');
|
| 1123 |
+
}
|
| 1124 |
+
return fetchWithAuth(guiOptions.BackendAddress + `/gradio_api/call/gradio_generate/${data.event_id}`)
|
| 1125 |
+
.then(resp => {
|
| 1126 |
+
if (!resp.ok) throw new Error(`HTTP error! status: ${resp.status}`);
|
| 1127 |
+
return resp.text();
|
| 1128 |
+
})
|
| 1129 |
+
.then(sseText => {
|
| 1130 |
+
const lines = sseText.split('\n');
|
| 1131 |
+
let eventType = null;
|
| 1132 |
+
let dataContent = null;
|
| 1133 |
+
for (const line of lines) {
|
| 1134 |
+
if (line.startsWith('event: ')) eventType = line.substring(7);
|
| 1135 |
+
else if (line.startsWith('data: ')) dataContent = line.substring(6);
|
| 1136 |
+
}
|
| 1137 |
+
if (eventType !== 'complete' || !dataContent) {
|
| 1138 |
+
throw new Error('Gradio SSE response not complete or missing data');
|
| 1139 |
+
}
|
| 1140 |
+
const resultData = JSON.parse(dataContent);
|
| 1141 |
+
if (!resultData || resultData.length === 0) {
|
| 1142 |
+
throw new Error('Invalid Gradio generation result format');
|
| 1143 |
+
}
|
| 1144 |
+
const responseData = JSON.parse(resultData[0]);
|
| 1145 |
+
if (!responseData.success) {
|
| 1146 |
+
throw new Error('Gradio generation failed: ' + (responseData.error || 'Unknown error'));
|
| 1147 |
+
}
|
| 1148 |
+
|
| 1149 |
+
// 显示生成信息
|
| 1150 |
+
showGenerationInfo(responseData.generation_time, responseData.file_size);
|
| 1151 |
+
showDownloadProgress();
|
| 1152 |
+
updateStatus('Downloading generated scene...', cameraParams.length);
|
| 1153 |
+
|
| 1154 |
+
// ��载文件:调用 download_file 获取下载 event_id,然后通过 SSE 拿到 URL,再实际下载
|
| 1155 |
+
return fetchWithAuth(guiOptions.BackendAddress + '/gradio_api/call/download_file', {
|
| 1156 |
+
method: 'POST',
|
| 1157 |
+
headers: { 'Content-Type': 'application/json' },
|
| 1158 |
+
body: JSON.stringify({ data: [responseData.file_id] })
|
| 1159 |
})
|
| 1160 |
+
.then(r => r.json())
|
| 1161 |
+
.then(downloadEvent => {
|
| 1162 |
+
return fetchWithAuth(guiOptions.BackendAddress + `/gradio_api/call/download_file/${downloadEvent.event_id}`)
|
| 1163 |
+
.then(r => {
|
| 1164 |
+
if (!r.ok) throw new Error(`HTTP error! status: ${r.status}`);
|
| 1165 |
+
return r.text();
|
| 1166 |
+
})
|
| 1167 |
+
.then(downloadSseText => {
|
| 1168 |
+
const lines = downloadSseText.split('\n');
|
| 1169 |
+
let eventType = null;
|
| 1170 |
+
let dataContent = null;
|
| 1171 |
+
for (const line of lines) {
|
| 1172 |
+
if (line.startsWith('event: ')) eventType = line.substring(7);
|
| 1173 |
+
else if (line.startsWith('data: ')) dataContent = line.substring(6);
|
| 1174 |
+
}
|
| 1175 |
+
if (eventType !== 'complete' || !dataContent) {
|
| 1176 |
+
throw new Error('Gradio download SSE response not complete or missing data');
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1177 |
}
|
| 1178 |
+
const fileData = JSON.parse(dataContent);
|
| 1179 |
+
if (!fileData || fileData.length === 0 || !fileData[0].url) {
|
| 1180 |
+
throw new Error('Invalid file data format from Gradio');
|
| 1181 |
+
}
|
| 1182 |
+
return fileData[0].url;
|
| 1183 |
+
});
|
| 1184 |
+
});
|
| 1185 |
+
})
|
| 1186 |
+
.then(fileUrl => {
|
| 1187 |
+
return fetchWithAuth(fileUrl).then(response => {
|
| 1188 |
+
if (!response.ok) throw new Error(`HTTP error! status: ${response.status}`);
|
| 1189 |
+
const contentLength = response.headers.get('content-length');
|
| 1190 |
+
const total = parseInt(contentLength || '0', 10);
|
| 1191 |
+
let loaded = 0;
|
| 1192 |
+
const reader = response.body.getReader();
|
| 1193 |
+
const chunks = [];
|
| 1194 |
+
function pump() {
|
| 1195 |
+
return reader.read().then(({ done, value }) => {
|
| 1196 |
+
if (done) return new Blob(chunks);
|
| 1197 |
+
chunks.push(value);
|
| 1198 |
+
loaded += value.length;
|
| 1199 |
+
if (total) updateProgressBar((loaded / total) * 100);
|
| 1200 |
+
return pump();
|
| 1201 |
+
});
|
| 1202 |
}
|
| 1203 |
+
return pump().then(blob => {
|
| 1204 |
+
const url = URL.createObjectURL(blob);
|
| 1205 |
+
return { url, __deleteAfterDownloadFileId: (typeof responseData !== 'undefined' ? responseData.file_id : null) };
|
| 1206 |
+
});
|
| 1207 |
});
|
| 1208 |
+
});
|
|
|
|
|
|
|
| 1209 |
})
|
| 1210 |
.then(data => {
|
| 1211 |
+
if (data && data.url) {
|
| 1212 |
updateStatus('Loading 3D scene...', cameraParams.length);
|
|
|
|
|
|
|
| 1213 |
if (instructionSplat) {
|
| 1214 |
scene.remove(instructionSplat);
|
| 1215 |
console.log('Instruction splat removed');
|
| 1216 |
}
|
|
|
|
| 1217 |
const GeneratedSplat = new SplatMesh({ url: data.url });
|
| 1218 |
scene.add(GeneratedSplat);
|
| 1219 |
+
currentGeneratedSplat = GeneratedSplat;
|
| 1220 |
console.log('3D scene loaded successfully!');
|
| 1221 |
updateStatus('Scene generated successfully!', cameraParams.length);
|
| 1222 |
hideDownloadProgress();
|
| 1223 |
showLoading(false);
|
| 1224 |
+
|
| 1225 |
+
// 通知后端删除文件(如果有 file_id)
|
| 1226 |
+
if (data.__deleteAfterDownloadFileId) {
|
| 1227 |
+
fetchWithAuth(guiOptions.BackendAddress + '/delete/' + data.__deleteAfterDownloadFileId, { method: 'POST' })
|
| 1228 |
+
.then(() => console.log('Delete notify sent'))
|
| 1229 |
+
.catch(err => console.warn('Delete notify failed', err));
|
| 1230 |
+
}
|
| 1231 |
}
|
| 1232 |
})
|
| 1233 |
.catch(error => {
|
|
|
|
| 1605 |
|
| 1606 |
// Step 1: Configure Generation Settings
|
| 1607 |
const step1Folder = gui.addFolder('1. Configure Settings');
|
| 1608 |
+
step1Folder.add(guiOptions, "BackendAddress").name("Backend Address");
|
| 1609 |
+
step1Folder.add(guiOptions, "HF_TOKEN").name("HF Token");
|
| 1610 |
|
| 1611 |
// FOV和Resolution控制器,初始时启用
|
| 1612 |
const fovController = step1Folder.add(guiOptions, "FOV", 0, 120, 1).name("FOV").onChange((value) => {
|
|
|
|
| 1653 |
const loadTrajectoryController = trajectoryFolder.add(guiOptions, "LoadTrajectoryFromJson").name("Load from JSON");
|
| 1654 |
const saveTrajectoryController = trajectoryFolder.add(guiOptions, "saveTrajectoryToJson").name("Save Trajectory");
|
| 1655 |
|
| 1656 |
+
// 初始状态:禁用保存按钮(相机数量不够)
|
| 1657 |
+
saveTrajectoryController.disable();
|
| 1658 |
+
|
| 1659 |
// 清理相机按钮
|
| 1660 |
const clearAllCamerasController = trajectoryFolder.add(guiOptions, "clearAllCameras").name("Clear All Cameras");
|
| 1661 |
|
|
|
|
| 1722 |
|
| 1723 |
// Store controllers globally so they can be accessed from guiOptions
|
| 1724 |
window.fixGenerationFOVController = fixGenerationFOVController;
|
| 1725 |
+
window.saveTrajectoryController = saveTrajectoryController;
|
| 1726 |
|
| 1727 |
// Step 3: Add Scene Prompts
|
| 1728 |
const step3Folder = gui.addFolder('3. Add Scene Prompts');
|
|
|
|
| 2136 |
if (loadTrajectoryOnly) {
|
| 2137 |
updateStatus(`Trajectory loaded: ${cameras.length} cameras`, cameraParams.length);
|
| 2138 |
} else {
|
| 2139 |
+
updateStatus(`JSON loaded: ${cameras.length} cameras`, cameraParams.length);
|
| 2140 |
}
|
| 2141 |
} catch (error) {
|
| 2142 |
console.error("JSON data processing error:", error);
|
models/render.py
CHANGED
|
@@ -6,8 +6,6 @@ import torch
|
|
| 6 |
import torch.nn as nn
|
| 7 |
import torch.nn.functional as F
|
| 8 |
|
| 9 |
-
from gsplat import rasterization
|
| 10 |
-
|
| 11 |
# torch.backends.cuda.preferred_linalg_library(backend="magma")
|
| 12 |
|
| 13 |
""""
|
|
@@ -17,6 +15,9 @@ class GaussianRendererWithCheckpoint(torch.autograd.Function):
|
|
| 17 |
@staticmethod
|
| 18 |
def render(xyz, feature, scale, rotation, opacity, test_c2w, test_intr,
|
| 19 |
W, H, sh_degree, near_plane, far_plane, backgrounds):
|
|
|
|
|
|
|
|
|
|
| 20 |
test_w2c = test_c2w.float().inverse().unsqueeze(0) # (1, 4, 4)
|
| 21 |
test_intr_i = torch.zeros(3, 3).to(test_intr.device)
|
| 22 |
test_intr_i[0, 0] = test_intr[0]
|
|
@@ -29,6 +30,7 @@ class GaussianRendererWithCheckpoint(torch.autograd.Function):
|
|
| 29 |
test_w2c, test_intr_i, W, H, sh_degree=sh_degree,
|
| 30 |
near_plane=near_plane, far_plane=far_plane,
|
| 31 |
render_mode="RGB+D",
|
|
|
|
| 32 |
backgrounds=backgrounds[None],
|
| 33 |
rasterize_mode='classic') # (1, H, W, 4)
|
| 34 |
# rendering[..., 3:] = rendering[..., 3:] + far_plane * (1 - alpha)
|
|
|
|
| 6 |
import torch.nn as nn
|
| 7 |
import torch.nn.functional as F
|
| 8 |
|
|
|
|
|
|
|
| 9 |
# torch.backends.cuda.preferred_linalg_library(backend="magma")
|
| 10 |
|
| 11 |
""""
|
|
|
|
| 15 |
@staticmethod
|
| 16 |
def render(xyz, feature, scale, rotation, opacity, test_c2w, test_intr,
|
| 17 |
W, H, sh_degree, near_plane, far_plane, backgrounds):
|
| 18 |
+
|
| 19 |
+
from gsplat import rasterization
|
| 20 |
+
|
| 21 |
test_w2c = test_c2w.float().inverse().unsqueeze(0) # (1, 4, 4)
|
| 22 |
test_intr_i = torch.zeros(3, 3).to(test_intr.device)
|
| 23 |
test_intr_i[0, 0] = test_intr[0]
|
|
|
|
| 30 |
test_w2c, test_intr_i, W, H, sh_degree=sh_degree,
|
| 31 |
near_plane=near_plane, far_plane=far_plane,
|
| 32 |
render_mode="RGB+D",
|
| 33 |
+
tile_size=16,
|
| 34 |
backgrounds=backgrounds[None],
|
| 35 |
rasterize_mode='classic') # (1, H, W, 4)
|
| 36 |
# rendering[..., 3:] = rendering[..., 3:] + far_plane * (1 - alpha)
|
packages.txt
CHANGED
|
@@ -1,2 +1,4 @@
|
|
| 1 |
libglm-dev
|
| 2 |
-
ffmpeg
|
|
|
|
|
|
|
|
|
| 1 |
libglm-dev
|
| 2 |
+
ffmpeg
|
| 3 |
+
gcc-11
|
| 4 |
+
g++-11
|
pre-requirements.txt
CHANGED
|
@@ -14,4 +14,5 @@ ftfy==6.3.1
|
|
| 14 |
flask==3.1.2
|
| 15 |
gradio==5.49.1
|
| 16 |
gsplat==1.5.2
|
| 17 |
-
accelerate==1.10.1
|
|
|
|
|
|
| 14 |
flask==3.1.2
|
| 15 |
gradio==5.49.1
|
| 16 |
gsplat==1.5.2
|
| 17 |
+
accelerate==1.10.1
|
| 18 |
+
nanobind=2.9.2
|
quant.py
CHANGED
|
@@ -138,7 +138,7 @@ class FP8DynamicLinear(torch.nn.Module):
|
|
| 138 |
super().__init__()
|
| 139 |
self.weight = torch.nn.Parameter(weight, requires_grad=False)
|
| 140 |
self.weight_scale = torch.nn.Parameter(weight_scale, requires_grad=False)
|
| 141 |
-
self.bias = bias
|
| 142 |
self.native_fp8_support = native_fp8_support
|
| 143 |
self.dtype = dtype
|
| 144 |
|
|
@@ -186,7 +186,6 @@ def FluxFp8GeMMProcessor(model: torch.nn.Module):
|
|
| 186 |
weight_scale=weight_scale,
|
| 187 |
bias=bias,
|
| 188 |
native_fp8_support=native_fp8_support,
|
| 189 |
-
dtype=linear.weight.dtype
|
| 190 |
)
|
| 191 |
replace_module(model, name, quant_linear)
|
| 192 |
del linear.weight
|
|
|
|
| 138 |
super().__init__()
|
| 139 |
self.weight = torch.nn.Parameter(weight, requires_grad=False)
|
| 140 |
self.weight_scale = torch.nn.Parameter(weight_scale, requires_grad=False)
|
| 141 |
+
self.bias = torch.nn.Parameter(bias.to(dtype), requires_grad=False)
|
| 142 |
self.native_fp8_support = native_fp8_support
|
| 143 |
self.dtype = dtype
|
| 144 |
|
|
|
|
| 186 |
weight_scale=weight_scale,
|
| 187 |
bias=bias,
|
| 188 |
native_fp8_support=native_fp8_support,
|
|
|
|
| 189 |
)
|
| 190 |
replace_module(model, name, quant_linear)
|
| 191 |
del linear.weight
|
requirements.txt
CHANGED
|
@@ -1 +1,2 @@
|
|
| 1 |
-
git+https://github.com/huggingface/diffusers.git@447e8322f76efea55d4769cd67c372edbf0715b8
|
|
|
|
|
|
| 1 |
+
git+https://github.com/huggingface/diffusers.git@447e8322f76efea55d4769cd67c372edbf0715b8
|
| 2 |
+
gti+https://github.com/nianticlabs/spz.git@a4fc69e7948c7152e807e6501d73ddc9c149ce37
|
utils.py
CHANGED
|
@@ -125,7 +125,7 @@ class TimestepEmbedding(nn.Module):
|
|
| 125 |
else:
|
| 126 |
return timestep_embedding(t, self.dim, self.max_period, self.time_factor) * self.weight.unsqueeze(0)
|
| 127 |
|
| 128 |
-
@torch.compile(mode="max-autotune-no-cudagraphs", dynamic=True)
|
| 129 |
def timestep_embedding(t, dim, max_period=10000, time_factor: float = 1000.0):
|
| 130 |
"""
|
| 131 |
Create sinusoidal timestep embeddings.
|
|
@@ -341,7 +341,7 @@ def matrix_to_square(mat):
|
|
| 341 |
elif l==4:
|
| 342 |
return torch.cat([mat, torch.tensor([0,0,0,1]).repeat(mat.shape[0],mat.shape[1],1,1).to(mat.device)],dim=2)
|
| 343 |
|
| 344 |
-
def
|
| 345 |
|
| 346 |
sh_degree = int(math.sqrt((gaussians.shape[-1] - sum([3, 1, 3, 4])) / 3 - 1))
|
| 347 |
|
|
@@ -380,28 +380,54 @@ def export_ply_for_gaussians(path, gaussians, opacity_threshold=0.00, T_norm=Non
|
|
| 380 |
scales = scales.detach() #.cpu().numpy()
|
| 381 |
rotations = rotations.detach() #.cpu().numpy()
|
| 382 |
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
l.append('f_dc_{}'.format(i))
|
| 387 |
-
l.append('opacity')
|
| 388 |
-
for i in range(scales.shape[1]):
|
| 389 |
-
l.append('scale_{}'.format(i))
|
| 390 |
-
for i in range(rotations.shape[1]):
|
| 391 |
-
l.append('rot_{}'.format(i))
|
| 392 |
|
| 393 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 394 |
|
| 395 |
-
# 最优化方案:使用numpy的recarray直接创建
|
| 396 |
-
attributes = torch.cat((xyzs, f_dc, opacities, scales, rotations), dim=1).cpu().numpy()
|
| 397 |
|
| 398 |
-
# 使用recarray直接创建,避免循环和类型转换
|
| 399 |
-
elements = np.rec.fromarrays([attributes[:, i] for i in range(attributes.shape[1])], names=l, formats=['f4'] * len(l))
|
| 400 |
-
el = PlyElement.describe(elements, 'vertex')
|
| 401 |
|
| 402 |
-
print(path)
|
| 403 |
|
| 404 |
-
PlyData([el]).write(path)
|
| 405 |
|
| 406 |
# plydata = PlyData([el])
|
| 407 |
|
|
|
|
| 125 |
else:
|
| 126 |
return timestep_embedding(t, self.dim, self.max_period, self.time_factor) * self.weight.unsqueeze(0)
|
| 127 |
|
| 128 |
+
# @torch.compile(mode="max-autotune-no-cudagraphs", dynamic=True)
|
| 129 |
def timestep_embedding(t, dim, max_period=10000, time_factor: float = 1000.0):
|
| 130 |
"""
|
| 131 |
Create sinusoidal timestep embeddings.
|
|
|
|
| 341 |
elif l==4:
|
| 342 |
return torch.cat([mat, torch.tensor([0,0,0,1]).repeat(mat.shape[0],mat.shape[1],1,1).to(mat.device)],dim=2)
|
| 343 |
|
| 344 |
+
def export_gaussians(path, gaussians, opacity_threshold=0.00, T_norm=None):
|
| 345 |
|
| 346 |
sh_degree = int(math.sqrt((gaussians.shape[-1] - sum([3, 1, 3, 4])) / 3 - 1))
|
| 347 |
|
|
|
|
| 380 |
scales = scales.detach() #.cpu().numpy()
|
| 381 |
rotations = rotations.detach() #.cpu().numpy()
|
| 382 |
|
| 383 |
+
"""spz
|
| 384 |
+
Data Layout
|
| 385 |
+
The Python bindings maintain the same data layout as the C++ library:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 386 |
|
| 387 |
+
Positions: [x1, y1, z1, x2, y2, z2, ...]
|
| 388 |
+
Scales: [sx1, sy1, sz1, sx2, sy2, sz2, ...] (log-scale)
|
| 389 |
+
Rotations: [x1, y1, z1, w1, x2, y2, z2, w2, ...] (quaternions)
|
| 390 |
+
Alphas: [a1, a2, a3, ...] (before sigmoid activation)
|
| 391 |
+
Colors: [r1, g1, b1, r2, g2, b2, ...] (base RGB)
|
| 392 |
+
Spherical Harmonics: Coefficient-major order, e.g., for degree 1: [sh1n1_r, sh1n1_g, sh1n1_b, sh10_r, sh10_g, sh10_b, sh1p1_r, sh1p1_g, sh1p1_b, ...]
|
| 393 |
+
"""
|
| 394 |
+
|
| 395 |
+
import spz
|
| 396 |
+
|
| 397 |
+
cloud = spz.GaussianCloud()
|
| 398 |
+
cloud.sh_degree = sh_degree
|
| 399 |
+
|
| 400 |
+
cloud.positions = xyzs.flatten().cpu().numpy()
|
| 401 |
+
cloud.scales = scales.flatten().cpu().numpy()
|
| 402 |
+
cloud.rotations = rotations[:, [3, 0, 1, 2]].flatten().cpu().numpy()
|
| 403 |
+
cloud.alphas = opacities.flatten().cpu().numpy()
|
| 404 |
+
cloud.colors = f_dc[..., :3].flatten().cpu().numpy()
|
| 405 |
+
cloud.sh = f_dc[..., 3:].flatten().cpu().numpy()
|
| 406 |
+
|
| 407 |
+
spz.save_spz(cloud, spz.PackOptions(), path)
|
| 408 |
+
|
| 409 |
+
# l = ['x', 'y', 'z']
|
| 410 |
+
# # All channels except the 3 DC
|
| 411 |
+
# for i in range(f_dc.shape[1]):
|
| 412 |
+
# l.append('f_dc_{}'.format(i))
|
| 413 |
+
# l.append('opacity')
|
| 414 |
+
# for i in range(scales.shape[1]):
|
| 415 |
+
# l.append('scale_{}'.format(i))
|
| 416 |
+
# for i in range(rotations.shape[1]):
|
| 417 |
+
# l.append('rot_{}'.format(i))
|
| 418 |
+
|
| 419 |
+
# dtype_full = [(attribute, 'f4') for attribute in l]
|
| 420 |
|
| 421 |
+
# # 最优化方案:使用numpy的recarray直接创建
|
| 422 |
+
# attributes = torch.cat((xyzs, f_dc, opacities, scales, rotations), dim=1).cpu().numpy()
|
| 423 |
|
| 424 |
+
# # 使用recarray直接创建,避免循环和类型转换
|
| 425 |
+
# elements = np.rec.fromarrays([attributes[:, i] for i in range(attributes.shape[1])], names=l, formats=['f4'] * len(l))
|
| 426 |
+
# el = PlyElement.describe(elements, 'vertex')
|
| 427 |
|
| 428 |
+
# print(path)
|
| 429 |
|
| 430 |
+
# PlyData([el]).write(path)
|
| 431 |
|
| 432 |
# plydata = PlyData([el])
|
| 433 |
|