Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification, AutoTokenizer, AutoModelForSeq2SeqLM
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
from sklearn.model_selection import train_test_split
|
| 5 |
+
import torch
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from torch.utils.data import Dataset
|
| 8 |
+
|
| 9 |
+
# Step 1: Load the World Cuisines dataset
|
| 10 |
+
ds = load_dataset("worldcuisines/food-kb")
|
| 11 |
+
|
| 12 |
+
# Access the 'main' dataset
|
| 13 |
+
dataset = ds['main']
|
| 14 |
+
|
| 15 |
+
# Check the structure of the dataset
|
| 16 |
+
print(dataset)
|
| 17 |
+
|
| 18 |
+
# Converting dataset to a list of dictionaries for easier manipulation
|
| 19 |
+
data_list = dataset.to_dict()['image1'] # Accessing the first image column (you can access others like image2, etc.)
|
| 20 |
+
|
| 21 |
+
# Now split the dataset into train and test
|
| 22 |
+
train_data, test_data = train_test_split(data_list, test_size=0.2)
|
| 23 |
+
|
| 24 |
+
# Check the shapes of train_data and test_data
|
| 25 |
+
print(f"Training data size: {len(train_data)}")
|
| 26 |
+
print(f"Testing data size: {len(test_data)}")
|
| 27 |
+
|
| 28 |
+
# Define a custom dataset class for the image classification task
|
| 29 |
+
class FoodDataset(Dataset):
|
| 30 |
+
def __init__(self, dataset, processor, max_length=256):
|
| 31 |
+
self.dataset = dataset
|
| 32 |
+
self.processor = processor
|
| 33 |
+
self.max_length = max_length
|
| 34 |
+
|
| 35 |
+
def __len__(self):
|
| 36 |
+
return len(self.dataset)
|
| 37 |
+
|
| 38 |
+
def __getitem__(self, idx):
|
| 39 |
+
item = self.dataset[idx]
|
| 40 |
+
# For simplicity, let's use image1 for training and test
|
| 41 |
+
image = Image.open(item['image1']) # Assuming 'image1' has the food images
|
| 42 |
+
label = item['fine_categories'] # You can modify this based on the label
|
| 43 |
+
|
| 44 |
+
# Process the image
|
| 45 |
+
encoding = self.processor(images=image, return_tensors="pt", padding=True, truncation=True)
|
| 46 |
+
|
| 47 |
+
# Return the input and target labels
|
| 48 |
+
return {
|
| 49 |
+
'input_ids': encoding['input_ids'].squeeze(),
|
| 50 |
+
'attention_mask': encoding['attention_mask'].squeeze(),
|
| 51 |
+
'labels': label # Assuming that 'fine_categories' is used as labels
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
# Step 2: Load the ViT model for image classification
|
| 55 |
+
processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
|
| 56 |
+
vit_model = AutoModelForImageClassification.from_pretrained("google/vit-base-patch16-224")
|
| 57 |
+
|
| 58 |
+
# Step 3: Load the text generation model (Gemini) for nutrition breakdown and diet plan
|
| 59 |
+
tokenizer = AutoTokenizer.from_pretrained("describeai/gemini")
|
| 60 |
+
gemini_model = AutoModelForSeq2SeqLM.from_pretrained("describeai/gemini")
|
| 61 |
+
|
| 62 |
+
# Helper function to get nutritional breakdown and allergen information
|
| 63 |
+
def get_nutrition_and_allergens(food_name):
|
| 64 |
+
# Look for the food item in the dataset
|
| 65 |
+
result = None
|
| 66 |
+
try:
|
| 67 |
+
dataset = ds['main'] # Access the correct dataset split
|
| 68 |
+
for item in dataset:
|
| 69 |
+
if food_name.lower() in item['name'].lower():
|
| 70 |
+
result = item
|
| 71 |
+
break
|
| 72 |
+
|
| 73 |
+
if result:
|
| 74 |
+
nutrition_info = result.get('nutrition', 'Nutrition information not available')
|
| 75 |
+
allergens = result.get('allergens', 'Allergen information not available')
|
| 76 |
+
diet_plan = f"This item is suitable for a diet including {result.get('suitable_for', 'N/A')}."
|
| 77 |
+
else:
|
| 78 |
+
nutrition_info = "Food item not found in the database."
|
| 79 |
+
allergens = "Allergen information not available."
|
| 80 |
+
diet_plan = "Diet plan not available for this food item."
|
| 81 |
+
|
| 82 |
+
except KeyError as e:
|
| 83 |
+
nutrition_info = f"Key error: {e}"
|
| 84 |
+
allergens = "Allergen information not available."
|
| 85 |
+
diet_plan = "Diet plan not available."
|
| 86 |
+
|
| 87 |
+
except Exception as e:
|
| 88 |
+
nutrition_info = f"An error occurred: {str(e)}"
|
| 89 |
+
allergens = "Allergen information not available."
|
| 90 |
+
diet_plan = "Diet plan not available."
|
| 91 |
+
|
| 92 |
+
return nutrition_info, allergens, diet_plan
|
| 93 |
+
|
| 94 |
+
# Main prediction function for the image classification and text generation
|
| 95 |
+
def predict(image):
|
| 96 |
+
try:
|
| 97 |
+
# Step 1: Classify the food item in the image using ViT model
|
| 98 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 99 |
+
outputs = vit_model(**inputs)
|
| 100 |
+
|
| 101 |
+
# Get the predicted label (food item)
|
| 102 |
+
predicted_label = outputs.logits.argmax(-1).item()
|
| 103 |
+
|
| 104 |
+
# Get the food name from the class labels (assuming the model has the food labels)
|
| 105 |
+
class_labels = vit_model.config.id2label # Get the class label mapping
|
| 106 |
+
food_item = class_labels[predicted_label]
|
| 107 |
+
|
| 108 |
+
# Step 2: Generate nutritional breakdown, allergens, and diet plan
|
| 109 |
+
nutrition_info, allergens, diet_plan = get_nutrition_and_allergens(food_item)
|
| 110 |
+
|
| 111 |
+
# Step 3: Generate a detailed description using the Gemini model
|
| 112 |
+
description_input = f"Nutritional breakdown and diet plan for {food_item}"
|
| 113 |
+
diet_plan_text = tokenizer(description_input, return_tensors="pt", padding=True, truncation=True)
|
| 114 |
+
diet_plan_output = gemini_model.generate(**diet_plan_text)
|
| 115 |
+
diet_plan_text = tokenizer.decode(diet_plan_output[0], skip_special_tokens=True)
|
| 116 |
+
|
| 117 |
+
# Combine results into a single output
|
| 118 |
+
response = f"**Detected Food:** {food_item}\n\n"
|
| 119 |
+
response += f"**Nutrition Info:** {nutrition_info}\n\n"
|
| 120 |
+
response += f"**Allergens:** {allergens}\n\n"
|
| 121 |
+
response += f"**Diet Plan:** {diet_plan}\n\n"
|
| 122 |
+
response += f"**Detailed Diet Plan and Breakdown:** {diet_plan_text}"
|
| 123 |
+
|
| 124 |
+
except Exception as e:
|
| 125 |
+
response = f"Error: {str(e)}"
|
| 126 |
+
|
| 127 |
+
return response
|
| 128 |
+
|
| 129 |
+
# Step 4: Gradio Interface
|
| 130 |
+
interface = gr.Interface(
|
| 131 |
+
fn=predict,
|
| 132 |
+
inputs=gr.Image(type="pil"),
|
| 133 |
+
outputs="text",
|
| 134 |
+
title="NutriScan: AI-Powered Food Analyzer",
|
| 135 |
+
description="Upload an image of food, and get a nutritional breakdown, allergen information, and diet plan recommendations.",
|
| 136 |
+
examples=[["path_to_example_image.jpg"]] # replace with paths to example images if needed
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
# Launch the Gradio interface
|
| 140 |
+
if __name__ == "__main__":
|
| 141 |
+
interface.launch()
|