Spaces:
Configuration error
Configuration error
| # | |
| # Code is adapted from https://github.com/lucidrains/e2-tts-pytorch | |
| # | |
| """ | |
| ein notation: | |
| b - batch | |
| n - sequence | |
| nt - text sequence | |
| nw - raw wave length | |
| d - dimension | |
| """ | |
| from __future__ import annotations | |
| from typing import Dict, Any, Optional | |
| from functools import partial | |
| import torch | |
| from torch import nn | |
| from torch.nn import Module, ModuleList, Sequential, Linear | |
| import torch.nn.functional as F | |
| from torchdiffeq import odeint | |
| from einops.layers.torch import Rearrange | |
| from einops import rearrange, repeat, pack, unpack | |
| from x_transformers import Attention, FeedForward, RMSNorm, AdaptiveRMSNorm | |
| from x_transformers.x_transformers import RotaryEmbedding | |
| from gateloop_transformer import SimpleGateLoopLayer | |
| from tensor_typing import Float | |
| class Identity(Module): | |
| def forward(self, x, **kwargs): | |
| return x | |
| class AdaLNZero(Module): | |
| def __init__(self, dim: int, dim_condition: Optional[int] = None, init_bias_value: float = -2.): | |
| super().__init__() | |
| dim_condition = dim_condition or dim | |
| self.to_gamma = nn.Linear(dim_condition, dim) | |
| nn.init.zeros_(self.to_gamma.weight) | |
| nn.init.constant_(self.to_gamma.bias, init_bias_value) | |
| def forward(self, x: torch.Tensor, *, condition: torch.Tensor) -> torch.Tensor: | |
| if condition.ndim == 2: | |
| condition = rearrange(condition, 'b d -> b 1 d') | |
| gamma = self.to_gamma(condition).sigmoid() | |
| return x * gamma | |
| def exists(v: Any) -> bool: | |
| return v is not None | |
| def default(v: Any, d: Any) -> Any: | |
| return v if exists(v) else d | |
| def divisible_by(num: int, den: int) -> bool: | |
| return (num % den) == 0 | |
| class Transformer(Module): | |
| def __init__( | |
| self, | |
| *, | |
| dim: int, | |
| depth: int = 8, | |
| cond_on_time: bool = True, | |
| skip_connect_type: str = 'concat', | |
| abs_pos_emb: bool = True, | |
| max_seq_len: int = 8192, | |
| heads: int = 8, | |
| dim_head: int = 64, | |
| num_gateloop_layers: int = 1, | |
| dropout: float = 0.1, | |
| num_registers: int = 32, | |
| attn_kwargs: Dict[str, Any] = dict(gate_value_heads=True, softclamp_logits=True), | |
| ff_kwargs: Dict[str, Any] = dict() | |
| ): | |
| super().__init__() | |
| assert divisible_by(depth, 2), 'depth needs to be even' | |
| self.max_seq_len = max_seq_len | |
| self.abs_pos_emb = nn.Embedding(max_seq_len, dim) if abs_pos_emb else None | |
| self.dim = dim | |
| self.skip_connect_type = skip_connect_type | |
| needs_skip_proj = skip_connect_type == 'concat' | |
| self.depth = depth | |
| self.layers = ModuleList([]) | |
| self.num_registers = num_registers | |
| self.registers = nn.Parameter(torch.zeros(num_registers, dim)) | |
| nn.init.normal_(self.registers, std=0.02) | |
| self.rotary_emb = RotaryEmbedding(dim_head) | |
| self.cond_on_time = cond_on_time | |
| rmsnorm_klass = AdaptiveRMSNorm if cond_on_time else RMSNorm | |
| postbranch_klass = partial(AdaLNZero, dim=dim) if cond_on_time else Identity | |
| self.time_cond_mlp = Sequential( | |
| Rearrange('... -> ... 1'), | |
| Linear(1, dim), | |
| nn.SiLU() | |
| ) if cond_on_time else nn.Identity() | |
| for ind in range(depth): | |
| is_later_half = ind >= (depth // 2) | |
| gateloop = SimpleGateLoopLayer(dim=dim) | |
| attn_norm = rmsnorm_klass(dim) | |
| attn = Attention(dim=dim, heads=heads, dim_head=dim_head, dropout=dropout, **attn_kwargs) | |
| attn_adaln_zero = postbranch_klass() | |
| ff_norm = rmsnorm_klass(dim) | |
| ff = FeedForward(dim=dim, glu=True, dropout=dropout, **ff_kwargs) | |
| ff_adaln_zero = postbranch_klass() | |
| skip_proj = Linear(dim * 2, dim, bias=False) if needs_skip_proj and is_later_half else None | |
| self.layers.append(ModuleList([ | |
| gateloop, skip_proj, attn_norm, attn, attn_adaln_zero, | |
| ff_norm, ff, ff_adaln_zero | |
| ])) | |
| self.final_norm = RMSNorm(dim) | |
| def forward( | |
| self, | |
| x: Float['b n d'], | |
| times: Optional[Float['b'] | Float['']] = None, | |
| ) -> torch.Tensor: | |
| batch, seq_len, device = *x.shape[:2], x.device | |
| assert not (exists(times) ^ self.cond_on_time), '`times` must be passed in if `cond_on_time` is set to `True` and vice versa' | |
| norm_kwargs = {} | |
| if exists(self.abs_pos_emb): | |
| # assert seq_len <= self.max_seq_len, f'{seq_len} exceeds the set `max_seq_len` ({self.max_seq_len}) on Transformer' | |
| seq = torch.arange(seq_len, device=device) | |
| x = x + self.abs_pos_emb(seq) | |
| if exists(times): | |
| if times.ndim == 0: | |
| times = repeat(times, ' -> b', b=batch) | |
| times = self.time_cond_mlp(times) | |
| norm_kwargs['condition'] = times | |
| registers = repeat(self.registers, 'r d -> b r d', b=batch) | |
| x, registers_packed_shape = pack((registers, x), 'b * d') | |
| rotary_pos_emb = self.rotary_emb.forward_from_seq_len(x.shape[-2]) | |
| skips = [] | |
| for ind, ( | |
| gateloop, maybe_skip_proj, attn_norm, attn, maybe_attn_adaln_zero, | |
| ff_norm, ff, maybe_ff_adaln_zero | |
| ) in enumerate(self.layers): | |
| layer = ind + 1 | |
| is_first_half = layer <= (self.depth // 2) | |
| if is_first_half: | |
| skips.append(x) | |
| else: | |
| skip = skips.pop() | |
| if self.skip_connect_type == 'concat': | |
| x = torch.cat((x, skip), dim=-1) | |
| x = maybe_skip_proj(x) | |
| x = gateloop(x) + x | |
| attn_out = attn(attn_norm(x, **norm_kwargs), rotary_pos_emb=rotary_pos_emb) | |
| x = x + maybe_attn_adaln_zero(attn_out, **norm_kwargs) | |
| ff_out = ff(ff_norm(x, **norm_kwargs)) | |
| x = x + maybe_ff_adaln_zero(ff_out, **norm_kwargs) | |
| assert len(skips) == 0 | |
| _, x = unpack(x, registers_packed_shape, 'b * d') | |
| return self.final_norm(x) | |
| class VoiceRestore(nn.Module): | |
| def __init__( | |
| self, | |
| sigma: float = 0.0, | |
| transformer: Optional[Dict[str, Any]] = None, | |
| odeint_kwargs: Optional[Dict[str, Any]] = None, | |
| num_channels: int = 100, | |
| ): | |
| super().__init__() | |
| self.sigma = sigma | |
| self.num_channels = num_channels | |
| self.transformer = Transformer(**transformer, cond_on_time=True) | |
| self.odeint_kwargs = odeint_kwargs or {'atol': 1e-5, 'rtol': 1e-5, 'method': 'midpoint'} | |
| self.proj_in = nn.Linear(num_channels, self.transformer.dim) | |
| self.cond_proj = nn.Linear(num_channels, self.transformer.dim) | |
| self.to_pred = nn.Linear(self.transformer.dim, num_channels) | |
| def transformer_with_pred_head(self, x: torch.Tensor, times: torch.Tensor, cond: Optional[torch.Tensor] = None) -> torch.Tensor: | |
| x = self.proj_in(x) | |
| if cond is not None: | |
| cond_proj = self.cond_proj(cond) | |
| x = x + cond_proj | |
| attended = self.transformer(x, times=times) | |
| return self.to_pred(attended) | |
| def cfg_transformer_with_pred_head( | |
| self, | |
| *args, | |
| cond=None, | |
| mask=None, | |
| cfg_strength: float = 0.5, | |
| **kwargs, | |
| ): | |
| pred = self.transformer_with_pred_head(*args, **kwargs, cond=cond) | |
| if cfg_strength < 1e-5: | |
| return pred * mask.unsqueeze(-1) if mask is not None else pred | |
| null_pred = self.transformer_with_pred_head(*args, **kwargs, cond=None) | |
| result = pred + (pred - null_pred) * cfg_strength | |
| return result * mask.unsqueeze(-1) if mask is not None else result | |
| def sample(self, processed: torch.Tensor, steps: int = 32, cfg_strength: float = 0.5) -> torch.Tensor: | |
| self.eval() | |
| times = torch.linspace(0, 1, steps, device=processed.device) | |
| def ode_fn(t: torch.Tensor, x: torch.Tensor) -> torch.Tensor: | |
| return self.cfg_transformer_with_pred_head(x, times=t, cond=processed, cfg_strength=cfg_strength) | |
| y0 = torch.randn_like(processed) | |
| trajectory = odeint(ode_fn, y0, times, **self.odeint_kwargs) | |
| restored = trajectory[-1] | |
| return restored |