Spaces:
Running
on
Zero
Running
on
Zero
Commit
Β·
37f4150
1
Parent(s):
a30a4af
add cs180 encoder
Browse files- app.py +154 -0
- requirements.txt +9 -0
app.py
ADDED
|
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import spaces
|
| 3 |
+
import torch
|
| 4 |
+
from diffusers import DiffusionPipeline
|
| 5 |
+
from transformers import T5EncoderModel
|
| 6 |
+
import tempfile
|
| 7 |
+
|
| 8 |
+
# Global variable to store the text pipeline
|
| 9 |
+
text_pipe = None
|
| 10 |
+
|
| 11 |
+
def load_model():
|
| 12 |
+
"""Load the T5 text encoder model"""
|
| 13 |
+
global text_pipe
|
| 14 |
+
if text_pipe is None:
|
| 15 |
+
print("Loading T5 text encoder...")
|
| 16 |
+
|
| 17 |
+
# Get token from environment
|
| 18 |
+
import os
|
| 19 |
+
token = os.getenv("HF_TOKEN")
|
| 20 |
+
|
| 21 |
+
text_encoder = T5EncoderModel.from_pretrained(
|
| 22 |
+
"DeepFloyd/IF-I-L-v1.0",
|
| 23 |
+
subfolder="text_encoder",
|
| 24 |
+
load_in_8bit=True,
|
| 25 |
+
variant="8bit",
|
| 26 |
+
device_map="auto",
|
| 27 |
+
token=token # Add this line
|
| 28 |
+
)
|
| 29 |
+
text_pipe = DiffusionPipeline.from_pretrained(
|
| 30 |
+
"DeepFloyd/IF-I-L-v1.0",
|
| 31 |
+
text_encoder=text_encoder,
|
| 32 |
+
unet=None,
|
| 33 |
+
token=token # Add this line
|
| 34 |
+
)
|
| 35 |
+
print("Model loaded successfully!")
|
| 36 |
+
return text_pipe
|
| 37 |
+
|
| 38 |
+
@spaces.GPU
|
| 39 |
+
def generate_embeddings(prompts_text):
|
| 40 |
+
"""
|
| 41 |
+
Generate embeddings from text prompts
|
| 42 |
+
Args:
|
| 43 |
+
prompts_text: String with one prompt per line
|
| 44 |
+
Returns:
|
| 45 |
+
Path to the saved .pth file and a status message
|
| 46 |
+
"""
|
| 47 |
+
try:
|
| 48 |
+
# Load model if not already loaded
|
| 49 |
+
pipe = load_model()
|
| 50 |
+
|
| 51 |
+
# Parse prompts (one per line)
|
| 52 |
+
prompts = [p.strip() for p in prompts_text.strip().split('\n') if p.strip()]
|
| 53 |
+
|
| 54 |
+
if not prompts:
|
| 55 |
+
return None, "Error: Please enter at least one prompt"
|
| 56 |
+
|
| 57 |
+
# Add empty string for CFG (Classifier Free Guidance)
|
| 58 |
+
if '' not in prompts:
|
| 59 |
+
prompts.append('')
|
| 60 |
+
|
| 61 |
+
# Generate embeddings
|
| 62 |
+
print(f"Generating embeddings for {len(prompts)} prompts...")
|
| 63 |
+
prompt_embeds_list = []
|
| 64 |
+
for prompt in prompts:
|
| 65 |
+
embeds = pipe.encode_prompt(prompt)
|
| 66 |
+
prompt_embeds_list.append(embeds)
|
| 67 |
+
|
| 68 |
+
# Extract positive prompt embeddings
|
| 69 |
+
prompt_embeds, negative_prompt_embeds = zip(*prompt_embeds_list)
|
| 70 |
+
|
| 71 |
+
# Create dictionary
|
| 72 |
+
prompt_embeds_dict = dict(zip(prompts, prompt_embeds))
|
| 73 |
+
|
| 74 |
+
# Save to temporary file
|
| 75 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.pth')
|
| 76 |
+
torch.save(prompt_embeds_dict, temp_file.name)
|
| 77 |
+
temp_file.close()
|
| 78 |
+
|
| 79 |
+
status_msg = f"β
Successfully generated embeddings for {len(prompts)} prompts!\n"
|
| 80 |
+
status_msg += "Each embedding has shape: [1, 77, 4096]\n"
|
| 81 |
+
status_msg += "Prompts processed:\n" + "\n".join([f" - '{p}'" for p in prompts])
|
| 82 |
+
|
| 83 |
+
return temp_file.name, status_msg
|
| 84 |
+
|
| 85 |
+
except Exception as e:
|
| 86 |
+
return None, f"β Error: {str(e)}"
|
| 87 |
+
|
| 88 |
+
# Create Gradio interface
|
| 89 |
+
with gr.Blocks(title="T5 Text Encoder - Embeddings Generator") as demo:
|
| 90 |
+
gr.Markdown("""
|
| 91 |
+
# π€ CS180 HW5: T5 Text Encoder Embeddings Generator
|
| 92 |
+
|
| 93 |
+
This space uses the **DeepFloyd IF** T5 text encoder to generate embeddings from your text prompts.
|
| 94 |
+
|
| 95 |
+
### How to use:
|
| 96 |
+
1. Enter your prompts in the text box (one prompt per line)
|
| 97 |
+
2. Click "Generate Embeddings"
|
| 98 |
+
3. Download the generated `.pth` file containing the embeddings
|
| 99 |
+
|
| 100 |
+
### About the embeddings:
|
| 101 |
+
- Each embedding has shape: `[1, 77, 4096]`
|
| 102 |
+
- `77` = max sequence length
|
| 103 |
+
- `4096` = embedding dimension of the T5 encoder
|
| 104 |
+
- An empty prompt (`''`) is automatically added for Classifier Free Guidance (CFG)
|
| 105 |
+
""")
|
| 106 |
+
|
| 107 |
+
with gr.Row():
|
| 108 |
+
with gr.Column():
|
| 109 |
+
prompts_input = gr.Textbox(
|
| 110 |
+
label="Enter Prompts (one per line)",
|
| 111 |
+
placeholder="an oil painting of a snowy mountain village\na photo of the amalfi coast\na photo of a man\n...",
|
| 112 |
+
lines=15,
|
| 113 |
+
value="""an oil painting of a snowy mountain village
|
| 114 |
+
a photo of the amalfi coast
|
| 115 |
+
a photo of a man
|
| 116 |
+
a photo of a hipster barista
|
| 117 |
+
a photo of a dog
|
| 118 |
+
an oil painting of people around a campfire
|
| 119 |
+
an oil painting of an old man
|
| 120 |
+
a lithograph of waterfalls
|
| 121 |
+
a lithograph of a skull
|
| 122 |
+
a man wearing a hat
|
| 123 |
+
a high quality photo
|
| 124 |
+
a rocket ship
|
| 125 |
+
a pencil"""
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
generate_btn = gr.Button("π Generate Embeddings", variant="primary", size="lg")
|
| 129 |
+
|
| 130 |
+
with gr.Column():
|
| 131 |
+
status_output = gr.Textbox(
|
| 132 |
+
label="Status",
|
| 133 |
+
lines=10,
|
| 134 |
+
interactive=False
|
| 135 |
+
)
|
| 136 |
+
file_output = gr.File(
|
| 137 |
+
label="Download Embeddings (.pth file)"
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
generate_btn.click(
|
| 141 |
+
fn=generate_embeddings,
|
| 142 |
+
inputs=[prompts_input],
|
| 143 |
+
outputs=[file_output, status_output]
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
gr.Markdown("""
|
| 147 |
+
### π Note:
|
| 148 |
+
- The first run may take a while as the model needs to download (~8GB)
|
| 149 |
+
- Subsequent runs will be faster
|
| 150 |
+
- The generated `.pth` file can be loaded in PyTorch using: `torch.load('prompt_embeds_dict.pth')`
|
| 151 |
+
""")
|
| 152 |
+
|
| 153 |
+
if __name__ == "__main__":
|
| 154 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
torch
|
| 3 |
+
diffusers
|
| 4 |
+
transformers
|
| 5 |
+
accelerate
|
| 6 |
+
bitsandbytes
|
| 7 |
+
sentencepiece
|
| 8 |
+
protobuf
|
| 9 |
+
bitsandbytes
|