File size: 118,776 Bytes
e04289e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fd78b1
 
aafeadf
9fd78b1
 
 
 
 
e04289e
 
 
 
 
 
 
bc2a24c
 
3d308e7
bc2a24c
 
 
 
 
e04289e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41c3e66
 
 
e04289e
 
41c3e66
 
e04289e
 
 
 
 
 
 
 
 
 
 
 
 
 
41c3e66
e04289e
 
 
41c3e66
e04289e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef29226
e04289e
ef29226
 
 
e04289e
ef29226
 
 
e04289e
ef29226
e04289e
ef29226
 
 
 
 
 
 
e04289e
 
ef29226
 
 
 
 
e04289e
ef29226
 
 
e04289e
ef29226
 
e04289e
 
 
ef29226
 
 
e04289e
ef29226
 
 
e04289e
ef29226
 
 
e04289e
ef29226
e04289e
ef29226
e04289e
ef29226
 
 
 
 
e04289e
 
ef29226
e04289e
 
 
 
 
ef29226
 
 
 
 
e04289e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3911742
e04289e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1cbfa2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e04289e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3911742
 
e04289e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5584a05
 
e04289e
 
 
 
 
 
 
 
 
 
 
 
344e1a0
 
e04289e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3911742
 
e04289e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5584a05
 
e04289e
 
 
 
 
 
 
 
 
 
 
 
344e1a0
 
e04289e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4b6544
e04289e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ab78bb
 
e04289e
 
 
 
 
 
 
 
 
 
 
 
9fd78b1
 
 
aafeadf
9fd78b1
 
e04289e
aafeadf
 
 
 
e04289e
 
 
 
 
 
2ab78bb
e04289e
 
2ab78bb
e04289e
44a87dc
e04289e
2ab78bb
e04289e
 
 
 
 
 
2ab78bb
e04289e
 
 
 
 
 
 
 
2ab78bb
e04289e
 
 
 
2ab78bb
e04289e
 
784f8aa
2ab78bb
784f8aa
 
 
 
 
 
 
 
 
 
e04289e
784f8aa
 
 
e04289e
784f8aa
 
 
 
 
 
 
 
 
 
 
85dbeb5
784f8aa
85dbeb5
 
4c778c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85dbeb5
784f8aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85dbeb5
 
 
fb3e27a
 
 
 
 
85dbeb5
fb3e27a
 
 
 
 
 
 
 
 
 
 
85dbeb5
 
fb3e27a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e04289e
fb3e27a
 
784f8aa
 
e04289e
784f8aa
 
e04289e
784f8aa
e0d3b4b
 
4c778c9
 
 
e0d3b4b
4c778c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
784f8aa
4c778c9
 
e0d3b4b
fb3e27a
 
4c778c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb3e27a
4c778c9
784f8aa
9fd78b1
 
aafeadf
 
9fd78b1
aafeadf
 
 
 
9fd78b1
784f8aa
 
 
aafeadf
 
326b5e0
784f8aa
 
e04289e
 
 
 
aafeadf
 
 
e04289e
 
 
 
 
 
072709c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e04289e
aafeadf
 
e04289e
aafeadf
 
44a87dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e04289e
aafeadf
44a87dc
 
 
 
 
072709c
4c778c9
072709c
4c778c9
072709c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c778c9
072709c
4c778c9
 
 
44a87dc
 
072709c
e04289e
aafeadf
e04289e
aafeadf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
326b5e0
aafeadf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
326b5e0
aafeadf
 
 
326b5e0
aafeadf
 
e04289e
 
9fd78b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
326b5e0
e04289e
 
 
 
 
 
 
 
 
2ab78bb
e04289e
 
2ab78bb
e04289e
 
 
 
 
 
 
2ab78bb
e04289e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
784f8aa
 
 
 
 
e04289e
784f8aa
 
 
e04289e
784f8aa
 
516309b
 
784f8aa
 
 
 
 
 
 
 
 
e04289e
784f8aa
 
 
e04289e
784f8aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e04289e
784f8aa
 
e04289e
 
784f8aa
e04289e
 
784f8aa
 
e04289e
784f8aa
 
e04289e
784f8aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e04289e
784f8aa
 
 
 
 
 
 
 
 
 
 
 
a387962
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
784f8aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e04289e
516309b
 
 
 
a387962
 
 
85dbeb5
 
a387962
 
176f9a1
 
a387962
176f9a1
 
 
a387962
176f9a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0d3b4b
 
 
 
a387962
e04289e
 
 
 
d033fd0
e04289e
 
 
d033fd0
 
e04289e
 
 
 
 
 
 
d033fd0
e04289e
 
 
 
 
 
 
 
 
d033fd0
e04289e
 
 
 
 
 
d033fd0
e04289e
 
 
2ab78bb
 
e04289e
2ab78bb
e04289e
 
 
2ab78bb
e04289e
2ab78bb
e04289e
 
 
2ab78bb
e04289e
2ab78bb
e04289e
 
 
2ab78bb
e04289e
 
 
 
2ab78bb
e04289e
d033fd0
 
e04289e
 
d033fd0
e04289e
 
d033fd0
5584a05
e04289e
5584a05
e04289e
5584a05
e04289e
d033fd0
 
e04289e
 
 
 
 
 
 
 
d033fd0
e04289e
d033fd0
 
d1cbfa2
 
 
 
 
 
 
d033fd0
 
 
 
 
e04289e
 
5584a05
e04289e
 
 
41c3e66
 
 
 
 
 
 
e632598
344e1a0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
import streamlit as st
import cv2
import numpy as np
from PIL import Image
from io import BytesIO
import base64
import tempfile
import os
import time
import urllib.request
import matplotlib.pyplot as plt
import pickle
from sklearn.metrics.pairwise import cosine_similarity # type: ignore
import pandas as pd

# Importar las utilidades para la base de datos de rostros
try:
    from face_database_utils import save_face_database, load_face_database, export_database_json, import_database_json, print_database_info
    DATABASE_UTILS_AVAILABLE = True
except ImportError:
    DATABASE_UTILS_AVAILABLE = False
    st.warning("Database utilities are not available. Face recognition data will not be persistent between sessions.")

# Importar DeepFace para reconocimiento facial avanzado
try:
    from deepface import DeepFace
    DEEPFACE_AVAILABLE = True
except ImportError:
    DEEPFACE_AVAILABLE = False

# Import functions for face comparison
try:
    from face_comparison import compare_faces, compare_faces_embeddings, generate_comparison_report_english, draw_face_matches, extract_face_embeddings, extract_face_embeddings_all_models
    FACE_COMPARISON_AVAILABLE = True
except ImportError:
    FACE_COMPARISON_AVAILABLE = False
    st.warning("Face comparison functions are not available. Please check your installation.")

# Función principal que encapsula toda la aplicación
def main():
    # Set page config with custom title and layout
    st.set_page_config(
        page_title="Advanced Face & Feature Detection",
        page_icon="👤",
        layout="wide",
        initial_sidebar_state="expanded"
    )
    
    # Sidebar for navigation and controls
    st.sidebar.title("Controls & Settings")

    # Initialize session_state to store original image and camera state
    if 'original_image' not in st.session_state:
        st.session_state.original_image = None
    if 'camera_running' not in st.session_state:
        st.session_state.camera_running = False
    if 'feature_camera_running' not in st.session_state:
        st.session_state.feature_camera_running = False

    # Navigation menu
    app_mode = st.sidebar.selectbox(
        "Choose the app mode",
        ["About", "Face Detection", "Feature Detection", "Comparison Mode", "Face Recognition"]
    )

    # Function to load DNN models with caching and auto-download
    @st.cache_resource
    def load_face_model():
        # No need to create directory as we're using the root directory
        #
            #
        
        # Correct model file names
        modelFile = "res10_300x300_ssd_iter_140000.caffemodel"
        configFile = "deploy.prototxt.txt"
        
        # Check if files exist
        missing_files = []
        if not os.path.exists(modelFile):
            missing_files.append(modelFile)
        if not os.path.exists(configFile):
            missing_files.append(configFile)
        
        if missing_files:
            st.error("Missing model files: " + ", ".join(missing_files))
            st.error("Please manually download the following files:")
            st.code("""
            1. Download the model file:
               URL: https://raw.githubusercontent.com/sr6033/face-detection-with-OpenCV-and-DNN/master/res10_300x300_ssd_iter_140000.caffemodel
               Save as: res10_300x300_ssd_iter_140000.caffemodel
               
            2. Download the configuration file:
               URL: https://raw.githubusercontent.com/sr6033/face-detection-with-OpenCV-and-DNN/master/deploy.prototxt.txt
               Save as: deploy.prototxt.txt
            """)
            st.stop()
        
        # Load model
        try:
            net = cv2.dnn.readNetFromCaffe(configFile, modelFile)
            return net
        except Exception as e:
            st.error(f"Error loading model: {e}")
            st.stop()

    @st.cache_resource
    def load_feature_models():
        # Load pre-trained models for eye and smile detection
        eye_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_eye.xml')
        smile_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_smile.xml')
        return eye_cascade, smile_cascade

    # Function for detecting faces in an image
    def detect_face_dnn(net, frame, conf_threshold=0.5):
        blob = cv2.dnn.blobFromImage(frame, 1.0, (300, 300), [104, 117, 123], False, False)
        net.setInput(blob)
        detections = net.forward()
        
        # Procesar las detecciones para devolver una lista de bounding boxes
        bboxes = []
        frame_h = frame.shape[0]
        frame_w = frame.shape[1]
        
        for i in range(detections.shape[2]):
            confidence = detections[0, 0, i, 2]
            if confidence > conf_threshold:
                x1 = int(detections[0, 0, i, 3] * frame_w)
                y1 = int(detections[0, 0, i, 4] * frame_h)
                x2 = int(detections[0, 0, i, 5] * frame_w)
                y2 = int(detections[0, 0, i, 6] * frame_h)
                
                # Asegurarse de que las coordenadas estén dentro de los límites de la imagen
                x1 = max(0, min(x1, frame_w - 1))
                y1 = max(0, min(y1, frame_h - 1))
                x2 = max(0, min(x2, frame_w - 1))
                y2 = max(0, min(y2, frame_h - 1))
                
                # Añadir el bounding box y la confianza
                bboxes.append([x1, y1, x2, y2, confidence])
        
        return bboxes

    # Function for processing face detections
    def process_face_detections(frame, detections, conf_threshold=0.5, bbox_color=(0, 255, 0)):
        # Create a copy for drawing on
        result_frame = frame.copy()
        
        # Filtrar detecciones por umbral de confianza
        bboxes = []
        for detection in detections:
            if len(detection) == 5:  # Asegurarse de que la detección tiene el formato correcto
                x1, y1, x2, y2, confidence = detection
                if confidence >= conf_threshold:
                    # Dibujar el bounding box
                    cv2.rectangle(result_frame, (x1, y1), (x2, y2), bbox_color, 2)
                    
                    # Añadir texto con la confianza
                    label = f"{confidence:.2f}"
                    cv2.putText(result_frame, label, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, bbox_color, 2)
                    
                    # Añadir a la lista de bounding boxes
                    bboxes.append([x1, y1, x2, y2, confidence])
        
        return result_frame, bboxes

    # Function to detect facial features (eyes, smile) with improved profile face handling
    def detect_facial_features(frame, bboxes, eye_cascade, smile_cascade, detect_eyes=True, detect_smile=True, smile_sensitivity=15, eye_sensitivity=5):
        result_frame = frame.copy()
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        
        # Counters for detection summary
        eye_count = 0
        smile_count = 0
        
        for bbox in bboxes:
            x1, y1, x2, y2, _ = bbox
            face_width = x2 - x1
            face_height = y2 - y1
            
            # Detect eyes if enabled
            if detect_eyes:
                # Adjust region of interest to focus on the upper part of the face
                upper_face_y1 = y1
                upper_face_y2 = y1 + int(face_height * 0.45)  # Reduced to focus more on the eye area
                
                # Extract ROI for eyes
                eye_roi_gray = gray[upper_face_y1:upper_face_y2, x1:x2]
                eye_roi_color = result_frame[upper_face_y1:upper_face_y2, x1:x2]
                
                if eye_roi_gray.size > 0:
                    # Enhance contrast for better detection
                    eye_roi_gray = cv2.equalizeHist(eye_roi_gray)
                    clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
                    eye_roi_gray = clahe.apply(eye_roi_gray)
                    
                    # Detect eyes with adjusted parameters
                    eyes = eye_cascade.detectMultiScale(
                        eye_roi_gray,
                        scaleFactor=1.05,
                        minNeighbors=max(3, eye_sensitivity),
                        minSize=(int(face_width * 0.1), int(face_width * 0.1)),
                        maxSize=(int(face_width * 0.25), int(face_width * 0.25))
                    )
                    
                    # Process detected eyes
                    if len(eyes) > 0:
                        # Sort by size and position
                        eyes = sorted(eyes, key=lambda e: (e[2] * e[3], -e[1]))  # Sort by size and vertical position
                        eyes = eyes[:2]  # Take at most 2 largest eyes
                        
                        for (ex, ey, ew, eh) in eyes:
                            # Validate eye size and position
                            if ew * eh > (face_width * face_height * 0.01):  # Minimum size threshold
                                eye_count += 1
                                cv2.rectangle(eye_roi_color, (ex, ey), (ex+ew, ey+eh), (255, 0, 0), 2)
                                cv2.putText(eye_roi_color, "Eye", (ex, ey-5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)
            
            # Detect smile if enabled
            if detect_smile:
                # Adjust region of interest for smile detection
                lower_face_y1 = y1 + int(face_height * 0.5)  # Start from middle of face
                lower_face_y2 = y2
                
                # Extract ROI for smile
                smile_roi_gray = gray[lower_face_y1:lower_face_y2, x1:x2]
                smile_roi_color = result_frame[lower_face_y1:lower_face_y2, x1:x2]
                
                if smile_roi_gray.size > 0:
                    # Enhance contrast for better detection
                    smile_roi_gray = cv2.equalizeHist(smile_roi_gray)
                    clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
                    smile_roi_gray = clahe.apply(smile_roi_gray)
                    
                    # Detect smiles with adjusted parameters
                    smiles = smile_cascade.detectMultiScale(
                        smile_roi_gray,
                        scaleFactor=1.1,
                        minNeighbors=max(5, smile_sensitivity),
                        minSize=(int(face_width * 0.3), int(face_width * 0.15)),
                        maxSize=(int(face_width * 0.6), int(face_width * 0.3))
                    )
                    
                    # Process detected smiles
                    if len(smiles) > 0:
                        # Sort by size and take the largest
                        smiles = sorted(smiles, key=lambda s: s[2] * s[3], reverse=True)
                        sx, sy, sw, sh = smiles[0]
                        
                        # Validate smile size and position
                        if sw * sh > (face_width * face_height * 0.05):  # Minimum size threshold
                            smile_count += 1
                            cv2.rectangle(smile_roi_color, (sx, sy), (sx+sw, sy+sh), (0, 0, 255), 2)
                            cv2.putText(smile_roi_color, "Smile", (sx, sy-5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
        
        return result_frame, eye_count, smile_count

    # Función para detectar atributos faciales (edad, género, emoción)
    def detect_face_attributes(image, bbox):
        """
        Detecta atributos faciales como edad, género y emoción usando DeepFace.
        
        Args:
            image: Imagen en formato OpenCV (BGR)
            bbox: Bounding box de la cara [x1, y1, x2, y2, conf]
            
        Returns:
            Diccionario con los atributos detectados
        """
        if not DEEPFACE_AVAILABLE:
            return None
        
        try:
            x1, y1, x2, y2, _ = bbox
            face_img = image[y1:y2, x1:x2]
            
            # Convertir de BGR a RGB para DeepFace
            face_img_rgb = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)
            
            # Analyze atributos faciales
            attributes = DeepFace.analyze(
                img_path=face_img_rgb,
                actions=['age', 'gender', 'emotion'],
                enforce_detection=False,
                detector_backend="opencv"
            )
            
            return attributes[0]
        
        except Exception as e:
            st.error(f"Error detecting facial attributes: {str(e)}")
            return None

    # Function to apply age and gender detection (placeholder - would need additional models)
    def detect_age_gender(frame, bboxes):
        # Versión mejorada que usa DeepFace si está disponible
        result_frame = frame.copy()
        
        for i, bbox in enumerate(bboxes):
            x1, y1, x2, y2, _ = bbox
            
            if DEEPFACE_AVAILABLE:
                # Intentar usar DeepFace para análisis facial
                attributes = detect_face_attributes(frame, bbox)
                
                if attributes:
                    # Extraer información de atributos
                    age = attributes.get('age', 'Unknown')
                    gender = attributes.get('gender', 'Unknown')
                    emotion = attributes.get('dominant_emotion', 'Unknown').capitalize()
                    gender_prob = attributes.get('gender', {}).get('Woman', 0)
                    
                    # Determinar color basado en confianza
                    if gender == 'Woman':
                        gender_color = (255, 0, 255)  # Magenta para mujer
                    else:
                        gender_color = (255, 0, 0)    # Azul para hombre
                    
                    # Añadir texto con información
                    cv2.putText(result_frame, f"Age: {age}", (x1, y2+20), 
                               cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 0), 2)
                    cv2.putText(result_frame, f"Gender: {gender}", (x1, y2+40), 
                               cv2.FONT_HERSHEY_SIMPLEX, 0.5, gender_color, 2)
                    cv2.putText(result_frame, f"Emotion: {emotion}", (x1, y2+60), 
                               cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 255), 2)
                else:
                    # Fallback si DeepFace falla
                    cv2.putText(result_frame, "Age: Unknown", (x1, y2+20), 
                               cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 255), 2)
                    cv2.putText(result_frame, "Gender: Unknown", (x1, y2+40), 
                               cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 255), 2)
            else:
                # Usar texto placeholder si DeepFace no está disponible
                cv2.putText(result_frame, "Age: 25-35", (x1, y2+20), 
                           cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 255), 2)
                cv2.putText(result_frame, "Gender: Unknown", (x1, y2+40), 
                           cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 255), 2)
        
        return result_frame

    # Function to generate download link for processed image
    def get_image_download_link(img, filename, text):
        buffered = BytesIO()
        img.save(buffered, format="JPEG")
        img_str = base64.b64encode(buffered.getvalue()).decode()
        href = f'<a href="data:file/txt;base64,{img_str}" download="{filename}">{text}</a>'
        return href

    # Function to process video frames
    def process_video(video_path, face_net, eye_cascade, smile_cascade, conf_threshold=0.5, detect_eyes=True, detect_smile=True, bbox_color=(0, 255, 0), smile_sensitivity=15, eye_sensitivity=5):
        cap = cv2.VideoCapture(video_path)
        
        # Get video properties
        frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(cap.get(cv2.CAP_PROP_FPS))
        
        # Create temporary output file
        temp_dir = tempfile.mkdtemp()
        temp_output_path = os.path.join(temp_dir, "processed_video.mp4")
        
        # Initialize video writer
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        out = cv2.VideoWriter(temp_output_path, fourcc, fps, (frame_width, frame_height))
        
        # Create a progress bar
        frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
        progress_bar = st.progress(0)
        status_text = st.empty()
        
        # Process video frames
        current_frame = 0
        processing_times = []
        
        # Total counters for statistics
        total_faces = 0
        total_eyes = 0
        total_smiles = 0
        
        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break
            
            # Start timing for performance metrics
            start_time = time.time()
            
            # Detect faces
            detections = detect_face_dnn(face_net, frame, conf_threshold)
            processed_frame, bboxes = process_face_detections(frame, detections, conf_threshold, bbox_color)
            
            # Update face counter
            total_faces += len(bboxes)
            
            # Detect facial features if enabled
            if detect_eyes or detect_smile:
                processed_frame, eye_count, smile_count = detect_facial_features(
                    processed_frame, 
                    bboxes, 
                    eye_cascade, 
                    smile_cascade,
                    detect_eyes,
                    detect_smile,
                    smile_sensitivity,
                    eye_sensitivity
                )
                # Update counters
                total_eyes += eye_count
                total_smiles += smile_count
            
            # End timing
            processing_times.append(time.time() - start_time)
            
            # Write the processed frame
            out.write(processed_frame)
            
            # Update progress
            current_frame += 1
            progress_bar.progress(current_frame / frame_count)
            status_text.text(f"Processing frame {current_frame}/{frame_count}")
        
        # Release resources
        cap.release()
        out.release()
        
        # Calculate and display performance metrics
        if processing_times:
            avg_time = sum(processing_times) / len(processing_times)
            status_text.text(f"Processing complete! Average processing time: {avg_time:.4f}s per frame")
        
        # Return detection statistics
        detection_stats = {
            "faces": total_faces // max(1, current_frame),  # Average per frame
            "eyes": total_eyes // max(1, current_frame),    # Average per frame
            "smiles": total_smiles // max(1, current_frame) # Average per frame
        }
        
        return temp_output_path, temp_dir, detection_stats

    # Camera control functions
    def start_camera():
        st.session_state.camera_running = True

    def stop_camera():
        st.session_state.camera_running = False
        st.session_state.camera_stopped = True

    def start_feature_camera():
        st.session_state.feature_camera_running = True

    def stop_feature_camera():
        st.session_state.feature_camera_running = False
        st.session_state.feature_camera_stopped = True

    def init_camera():
        """Initialize camera and show appropriate messages."""
        try:
            # Check if we're running on Hugging Face Spaces
            if os.environ.get('SPACE_ID'):
                st.warning("""
                ⚠️ Video streaming is limited in Hugging Face Spaces:
                
                - Live camera access is not available in the hosted environment
                - This is a security restriction of Hugging Face Spaces
                - To use camera features, you need to run this app locally on your machine
                
                You can still use the image upload option for face detection.
                """)
                
                st.info("To run locally:")
                st.code("""
                1. Clone the repository
                2. Install requirements: pip install -r requirements.txt
                3. Run: streamlit run streamlit_app.py
                """)
                return None
                
            cap = cv2.VideoCapture(0)
            if not cap.isOpened():
                st.error("Could not access the camera. Make sure it's connected and not being used by another application.")
                return None
            return cap
        except Exception as e:
            st.error(f"Error initializing camera: {str(e)}")
            return None

    if app_mode == "About":
        st.markdown("""
        ## About This App
        
        This application uses OpenCV's Deep Neural Network (DNN) module and Haar Cascade classifiers to detect faces and facial features in images and videos.
        
        ### Features:
        - Face detection using OpenCV DNN
        - Eye and smile detection using Haar Cascades
        - Support for both image and video processing
        - Adjustable confidence threshold
        - Download options for processed media
        - Performance metrics
        
        ### How to use:
        1. Select a mode from the sidebar
        2. Upload an image or video
        3. Adjust settings as needed
        4. View and download the results
        
        ### Technologies Used:
        - Streamlit for the web interface
        - OpenCV for computer vision operations
        - Python for backend processing
        
        ### Models:
        - SSD MobileNet for face detection
        - Haar Cascades for facial features
        """)
        
        # Display a sample image or GIF
        st.image("https://opencv.org/wp-content/uploads/2019/07/detection.gif", caption="Sample face detection", use_container_width=True)

    elif app_mode == "Face Detection":
        # Load the face detection model
        face_net = load_face_model()
        
        # Input type selection (Image or Video)
        input_type = st.sidebar.radio("Select Input Type", ["Image", "Video"])
        
        # Confidence threshold slider
        conf_threshold = st.sidebar.slider(
            "Confidence Threshold", 
            min_value=0.0, 
            max_value=1.0, 
            value=0.5, 
            step=0.05,
            help="Adjust the threshold for face detection confidence (higher = fewer detections but more accurate)"
        )
        
        # Style options
        bbox_color = st.sidebar.color_picker("Bounding Box Color", "#00FF00")
        # Convert hex color to BGR for OpenCV
        bbox_color_rgb = tuple(int(bbox_color.lstrip('#')[i:i+2], 16) for i in (0, 2, 4))
        bbox_color_bgr = (bbox_color_rgb[2], bbox_color_rgb[1], bbox_color_rgb[0])  # Convert RGB to BGR
        
        # Display processing metrics
        show_metrics = st.sidebar.checkbox("Show Processing Metrics", True)
        
        if input_type == "Image":
            # File uploader for images
            file_buffer = st.file_uploader("Upload an image", type=['jpg', 'jpeg', 'png'])
            
            if file_buffer is not None:
                # Read the file and convert it to OpenCV format
                raw_bytes = np.asarray(bytearray(file_buffer.read()), dtype=np.uint8)
                image = cv2.imdecode(raw_bytes, cv2.IMREAD_COLOR)
                
                # Save la imagen original en session_state para reprocesarla cuando cambie el umbral
                # Usar un identificador único para cada archivo para detectar cambios
                file_id = file_buffer.name + str(file_buffer.size)
                
                if 'file_id' not in st.session_state or st.session_state.file_id != file_id:
                    st.session_state.file_id = file_id
                    st.session_state.original_image = image.copy()
                
                # Display original image
                col1, col2 = st.columns(2)
                with col1:
                    st.subheader("Original Image")
                    st.image(st.session_state.original_image, channels='BGR', use_container_width=True)
                
                # Start timing for performance metrics
                start_time = time.time()
                
                # Detect faces
                detections = detect_face_dnn(face_net, st.session_state.original_image, conf_threshold)
                processed_image, bboxes = process_face_detections(st.session_state.original_image, detections, conf_threshold, bbox_color_bgr)
                
                # Calculate processing time
                processing_time = time.time() - start_time
                
                # Display the processed image
                with col2:
                    st.subheader("Processed Image")
                    st.image(processed_image, channels='BGR', use_container_width=True)
                    
                    # Convert OpenCV image to PIL for download
                    pil_img = Image.fromarray(processed_image[:, :, ::-1])
                    st.markdown(
                        get_image_download_link(pil_img, "face_detection_result.jpg", "📥 Download Processed Image"),
                        unsafe_allow_html=True
                    )
                
                # Show metrics if enabled
                if show_metrics:
                    st.subheader("Processing Metrics")
                    col1, col2, col3 = st.columns(3)
                    col1.metric("Processing Time", f"{processing_time:.4f} seconds")
                    col2.metric("Faces Detected", len(bboxes))
                    col3.metric("Confidence Threshold", f"{conf_threshold:.2f}")
                    
                    # Display detailed metrics in an expandable section
                    with st.expander("Detailed Detection Information"):
                        if bboxes:
                            st.write("Detected faces with confidence scores:")
                            for i, bbox in enumerate(bboxes):
                                st.write(f"Face #{i+1}: Confidence = {bbox[4]:.4f}")
                        else:
                            st.write("No faces detected in the image.")
        
        else:  # Video mode
            # Video mode options
            video_source = st.radio("Select video source", ["Upload video", "Use webcam"])
            
            if video_source == "Upload video":
                # File uploader for videos
                file_buffer = st.file_uploader("Upload a video", type=['mp4', 'avi', 'mov'])
                
                if file_buffer is not None:
                    # Save uploaded video to temporary file
                    temp_dir = tempfile.mkdtemp()
                    temp_path = os.path.join(temp_dir, "input_video.mp4")
                    
                    with open(temp_path, "wb") as f:
                        f.write(file_buffer.read())
                    
                    # Display original video
                    st.subheader("Original Video")
                    st.video(temp_path)
                    
                    # Load models for feature detection (will be used in the processing)
                    eye_cascade, smile_cascade = load_feature_models()
                    
                    # Process video button
                    if st.button("Process Video"):
                        with st.spinner("Processing video... This may take a while depending on the video length."):
                            # Process the video
                            output_path, output_dir, detection_stats = process_video(
                                temp_path, 
                                face_net, 
                                eye_cascade,
                                smile_cascade,
                                conf_threshold,
                                detect_eyes=True,
                                detect_smile=True,
                                bbox_color=bbox_color_bgr,
                                eye_sensitivity=5
                            )
                            
                            # Display processed video
                            st.subheader("Processed Video")
                            st.video(output_path)
                            
                            # Mostrar estadísticas de detección
                            st.subheader("Detection Summary")
                            summary_col1, summary_col2, summary_col3 = st.columns(3)
                            summary_col1.metric("Avg. Faces per Frame", detection_stats["faces"])
                            
                            if detect_eyes: # type: ignore
                                summary_col2.metric("Avg. Eyes per Frame", detection_stats["eyes"])
                            else:
                                summary_col2.metric("Eyes Detected", "N/A")
                            
                            if detect_smile: # type: ignore
                                summary_col3.metric("Avg. Smiles per Frame", detection_stats["smiles"])
                            else:
                                summary_col3.metric("Smiles Detected", "N/A")
                            
                            # Provide download link
                            with open(output_path, 'rb') as f:
                                video_bytes = f.read()
                            
                            st.download_button(
                                label="📥 Download Processed Video",
                                data=video_bytes,
                                file_name="processed_video.mp4",
                                mime="video/mp4"
                            )
                            
                            # Clean up temporary files
                            try:
                                os.remove(temp_path)
                                os.remove(output_path)
                                os.rmdir(temp_dir)
                                os.rmdir(output_dir)
                            except:
                                pass
            else:  # Use webcam
                st.subheader("Real-time face detection")
                st.write("Click 'Start Camera' to begin real-time face detection.")
                
                # Placeholder for webcam video
                camera_placeholder = st.empty()
                
                # Buttons to control the camera
                col1, col2 = st.columns(2)
                start_button = col1.button("Start Camera", key="start_camera")
                stop_button = col2.button("Stop Camera", key="stop_camera")
                
                # Show message when camera is stopped
                if 'camera_stopped' in st.session_state and st.session_state.camera_stopped:
                    st.info("Camera stopped. Click 'Start Camera' to activate it again.")
                    st.session_state.camera_stopped = False
                
                if st.session_state.camera_running:
                    st.info("Camera activated. Processing real-time video...")
                    # Initialize webcam
                    cap = cv2.VideoCapture(0)  # 0 is typically the main webcam
                    
                    if not cap.isOpened():
                        st.error("Could not access webcam. Make sure it's connected and not being used by another application.")
                        st.warning("⚠️ Note: If you're using this app on Hugging Face Spaces, webcam access is not supported. Try running this app locally for webcam features.")
                        st.session_state.camera_running = False
                    else:
                        # Display real-time video with face detection
                        try:
                            while st.session_state.camera_running:
                                ret, frame = cap.read()
                                if not ret:
                                    st.error("Error reading frame from camera.")
                                    break
                                
                                # Detect faces
                                detections = detect_face_dnn(face_net, frame, conf_threshold)
                                processed_frame, bboxes = process_face_detections(frame, detections, conf_threshold, bbox_color_bgr)
                                
                                # Display the processed frame
                                camera_placeholder.image(processed_frame, channels="BGR", use_container_width=True)
                                
                                # Small pause to avoid overloading the CPU
                                time.sleep(0.01)
                        finally:
                            # Release the camera when stopped
                            cap.release()

    elif app_mode == "Feature Detection":
        # Load all required models
        face_net = load_face_model()
        eye_cascade, smile_cascade = load_feature_models()
        
        # Feature selection checkboxes
        st.sidebar.subheader("Feature Detection Options")
        detect_eyes = st.sidebar.checkbox("Detect Eyes", True)
        
        # Add controls for eye detection sensitivity
        eye_sensitivity = 5  # Default value
        if detect_eyes:
            eye_sensitivity = st.sidebar.slider(
                "Eye Detection Sensitivity", 
                min_value=1, 
                max_value=10, 
                value=5, 
                step=1,
                help="Adjust the sensitivity of eye detection (lower value = more detections)"
            )
        
        detect_smile = st.sidebar.checkbox("Detect Smile", True)
        
        # Add controls for smile detection sensitivity
        smile_sensitivity = 15  # Default value
        if detect_smile:
            smile_sensitivity = st.sidebar.slider(
                "Smile Detection Sensitivity", 
                min_value=5, 
                max_value=30, 
                value=15, 
                step=1,
                help="Adjust the sensitivity of smile detection (lower value = more detections)"
            )
        
        detect_age_gender_option = st.sidebar.checkbox("Detect Age/Gender (Demo)", False)
        
        # Confidence threshold slider
        conf_threshold = st.sidebar.slider(
            "Face Detection Confidence", 
            min_value=0.0, 
            max_value=1.0, 
            value=0.5, 
            step=0.05
        )
        
        # Style options
        bbox_color = st.sidebar.color_picker("Bounding Box Color", "#00FF00")
        # Convert hex color to BGR for OpenCV
        bbox_color_rgb = tuple(int(bbox_color.lstrip('#')[i:i+2], 16) for i in (0, 2, 4))
        bbox_color_bgr = (bbox_color_rgb[2], bbox_color_rgb[1], bbox_color_rgb[0])  # Convert RGB to BGR
        
        # Input type selection
        input_type = st.sidebar.radio("Select Input Type", ["Image", "Video"])
        
        if input_type == "Image":
            # File uploader for images
            file_buffer = st.file_uploader("Upload an image", type=['jpg', 'jpeg', 'png'])
            
            if file_buffer is not None:
                # Read the file and convert it to OpenCV format
                raw_bytes = np.asarray(bytearray(file_buffer.read()), dtype=np.uint8)
                image = cv2.imdecode(raw_bytes, cv2.IMREAD_COLOR)
                
                # Save la imagen original en session_state para reprocesarla cuando cambie el umbral
                # Usar un identificador único para cada archivo para detectar cambios
                file_id = file_buffer.name + str(file_buffer.size)
                
                if 'feature_file_id' not in st.session_state or st.session_state.feature_file_id != file_id:
                    st.session_state.feature_file_id = file_id
                    st.session_state.feature_original_image = image.copy()
                
                # Display original image
                col1, col2 = st.columns(2)
                with col1:
                    st.subheader("Original Image")
                    st.image(st.session_state.feature_original_image, channels='BGR', use_container_width=True)
                
                # Start processing with face detection
                detections = detect_face_dnn(face_net, st.session_state.feature_original_image, conf_threshold)
                processed_image, bboxes = process_face_detections(st.session_state.feature_original_image, detections, conf_threshold, bbox_color_bgr)
                
                # Inicializar contadores
                eye_count = 0
                smile_count = 0
                
                # Detect facial features if any options are enabled
                if detect_eyes or detect_smile:
                    processed_image, eye_count, smile_count = detect_facial_features(
                        processed_image, 
                        bboxes,
                        eye_cascade,
                        smile_cascade,
                        detect_eyes,
                        detect_smile,
                        smile_sensitivity,
                        eye_sensitivity
                    )
                    
                # Apply age/gender detection if enabled (demo purpose)
                if detect_age_gender_option:
                    processed_image = detect_age_gender(processed_image, bboxes)
                
                # Display the processed image
                with col2:
                    st.subheader("Processed Image")
                    st.image(processed_image, channels='BGR', use_container_width=True)
                    
                    # Convert OpenCV image to PIL for download
                    pil_img = Image.fromarray(processed_image[:, :, ::-1])
                    st.markdown(
                        get_image_download_link(pil_img, "feature_detection_result.jpg", "📥 Download Processed Image"),
                        unsafe_allow_html=True
                    )
                
                # Display detection summary
                st.subheader("Detection Summary")
                summary_col1, summary_col2, summary_col3 = st.columns(3)
                summary_col1.metric("Faces Detected", len(bboxes))
                
                if detect_eyes:
                    summary_col2.metric("Eyes Detected", eye_count)
                else:
                    summary_col2.metric("Eyes Detected", "N/A")
                
                if detect_smile:
                    summary_col3.metric("Smiles Detected", smile_count)
                else:
                    summary_col3.metric("Smiles Detected", "N/A")
        
        else:  # Video mode
            st.write("Facial feature detection in video")
            
            # Video mode options
            video_source = st.radio("Select video source", ["Upload video", "Use webcam"])
            
            if video_source == "Upload video":
                st.write("Upload a video to process with facial feature detection.")
                # Similar implementation to Face Detection mode for uploaded videos
                file_buffer = st.file_uploader("Upload a video", type=['mp4', 'avi', 'mov'])
                
                if file_buffer is not None:
                    # Save uploaded video to temporary file
                    temp_dir = tempfile.mkdtemp()
                    temp_path = os.path.join(temp_dir, "input_video.mp4")
                    
                    with open(temp_path, "wb") as f:
                        f.write(file_buffer.read())
                    
                    # Display original video
                    st.subheader("Original Video")
                    st.video(temp_path)
                    
                    # Process video button
                    if st.button("Process Video"):
                        with st.spinner("Processing video... This may take a while depending on the video length."):
                            # Process the video with feature detection
                            output_path, output_dir, detection_stats = process_video(
                                temp_path, 
                                face_net, 
                                eye_cascade,
                                smile_cascade,
                                conf_threshold,
                                detect_eyes=True,
                                detect_smile=True,
                                bbox_color=bbox_color_bgr,
                                smile_sensitivity=smile_sensitivity,
                                eye_sensitivity=eye_sensitivity
                            )
                            
                            # Display processed video
                            st.subheader("Processed Video")
                            st.video(output_path)
                            
                            # Mostrar estadísticas de detección
                            st.subheader("Detection Summary")
                            summary_col1, summary_col2, summary_col3 = st.columns(3)
                            summary_col1.metric("Avg. Faces per Frame", detection_stats["faces"])
                            
                            if detect_eyes:
                                summary_col2.metric("Avg. Eyes per Frame", detection_stats["eyes"])
                            else:
                                summary_col2.metric("Eyes Detected", "N/A")
                            
                            if detect_smile:
                                summary_col3.metric("Avg. Smiles per Frame", detection_stats["smiles"])
                            else:
                                summary_col3.metric("Smiles Detected", "N/A")
                            
                            # Provide download link
                            with open(output_path, 'rb') as f:
                                video_bytes = f.read()
                            
                            st.download_button(
                                label="📥 Download Processed Video",
                                data=video_bytes,
                                file_name="feature_detection_video.mp4",
                                mime="video/mp4"
                            )
                            
                            # Clean up temporary files
                            try:
                                os.remove(temp_path)
                                os.remove(output_path)
                                os.rmdir(temp_dir)
                                os.rmdir(output_dir)
                            except:
                                pass
            else:  # Usar cámara web
                st.subheader("Real-time facial feature detection")
                st.write("Click 'Start Camera' to begin real-time detection.")
                
                # Placeholder for webcam video
                camera_placeholder = st.empty()
                
                # Buttons to control the camera
                col1, col2 = st.columns(2)
                start_button = col1.button("Start Camera", key="start_feature_camera")
                stop_button = col2.button("Stop Camera", key="stop_feature_camera")
                
                # Show message when camera is stopped
                if 'feature_camera_stopped' in st.session_state and st.session_state.feature_camera_stopped:
                    st.info("Camera stopped. Click 'Start Camera' to activate it again.")
                    st.session_state.feature_camera_stopped = False
                
                if st.session_state.feature_camera_running:
                    st.info("Camera activated. Processing real-time video with feature detection...")
                    # Initialize webcam
                    cap = cv2.VideoCapture(0)  # 0 is typically the main webcam
                    
                    if not cap.isOpened():
                        st.error("Could not access webcam. Make sure it's connected and not being used by another application.")
                        st.warning("⚠️ Note: If you're using this app on Hugging Face Spaces, webcam access is not supported. Try running this app locally for webcam features.")
                        st.session_state.feature_camera_running = False
                    else:
                        # Display real-time video with face and feature detection
                        try:
                            # Create placeholders for metrics
                            metrics_placeholder = st.empty()
                            metrics_col1, metrics_col2, metrics_col3 = metrics_placeholder.columns(3)
                            
                            # Initialize counters
                            face_count_total = 0
                            eye_count_total = 0
                            smile_count_total = 0
                            frame_count = 0
                            
                            while st.session_state.feature_camera_running:
                                ret, frame = cap.read()
                                if not ret:
                                    st.error("Error reading frame from camera.")
                                    break
                                
                                # Detect faces
                                detections = detect_face_dnn(face_net, frame, conf_threshold)
                                processed_frame, bboxes = process_face_detections(frame, detections, conf_threshold, bbox_color_bgr)
                                
                                # Update face counter
                                face_count = len(bboxes)
                                face_count_total += face_count
                                
                                # Initialize counters for this frame
                                eye_count = 0
                                smile_count = 0
                                
                                # Detect facial features if enabled
                                if detect_eyes or detect_smile:
                                    processed_frame, eye_count, smile_count = detect_facial_features(
                                        processed_frame, 
                                        bboxes,
                                        eye_cascade,
                                        smile_cascade,
                                        detect_eyes,
                                        detect_smile,
                                        smile_sensitivity,
                                        eye_sensitivity
                                    )
                                    
                                    # Update total counters
                                    eye_count_total += eye_count
                                    smile_count_total += smile_count
                                
                                # Apply age/gender detection if enabled
                                if detect_age_gender_option:
                                    processed_frame = detect_age_gender(processed_frame, bboxes)
                                
                                # Display the processed frame
                                camera_placeholder.image(processed_frame, channels="BGR", use_container_width=True)
                                
                                # Update frame counter
                                frame_count += 1
                                
                                # Update metrics every 5 frames to avoid overloading the interface
                                if frame_count % 5 == 0:
                                    metrics_col1.metric("Faces Detected", face_count)
                                    
                                    if detect_eyes:
                                        metrics_col2.metric("Eyes Detected", eye_count)
                                    else:
                                        metrics_col2.metric("Eyes Detected", "N/A")
                                    
                                    if detect_smile:
                                        metrics_col3.metric("Smiles Detected", smile_count)
                                    else:
                                        metrics_col3.metric("Smiles Detected", "N/A")
                                
                                # Small pause to avoid overloading the CPU
                                time.sleep(0.01)
                        finally:
                            # Release the camera when stopped
                            cap.release()

    elif app_mode == "Comparison Mode":
        st.subheader("Face Comparison")
        st.write("Upload two images to compare faces between them.")
        
        # Añadir explicación sobre la interpretación de resultados
        with st.expander("📌 How to interpret similarity results"):
            st.markdown("""
            ### Facial Similarity Interpretation Guide
            
            The system calculates similarity between faces based on multiple facial features and characteristics.
            
            **Similarity Ranges:**
            - **70-100%**: HIGH Similarity - Very likely to be the same person or identical twins
            - **50-70%**: MEDIUM Similarity - Possible match, requires verification
            - **30-50%**: LOW Similarity - Different people with some similar features
            - **0-30%**: VERY LOW Similarity - Completely different people
            
            **Enhanced Comparison System:**
            The system uses a sophisticated approach that:
            1. Analyzes multiple facial characteristics with advanced precision
            2. Evaluates hair style/color, facial structure, texture patterns, and expressions with improved accuracy
            3. Applies a balanced differentiation between similar and different individuals
            4. Creates a clear gap between similar and different people's scores
            5. Reduces scores for people with different facial structures
            6. Applies penalty factors for critical differences in facial features
            
            **Features Analyzed:**
            - Facial texture patterns (HOG features)
            - Eye region characteristics (highly weighted)
            - Nose bridge features
            - Hair style and color patterns (enhanced detection)
            - Precise facial proportions and structure
            - Texture and edge patterns
            - Facial expressions
            - Critical difference markers (aspect ratio, brightness patterns, texture variance)
            
            **Factors affecting similarity:**
            - Face angle and expression
            - Lighting conditions
            - Age differences
            - Image quality
            - Gender characteristics (with stronger weighting)
            - Critical facial structure differences
            
            **Important note:** This system is designed to provide highly accurate similarity scores that create a clear distinction between different individuals while still recognizing truly similar people. The algorithm now applies multiple reduction factors to ensure that different people receive appropriately low similarity scores. For official identification, always use certified systems.
            """)
        
        # Load face detection model
        face_net = load_face_model()
        
        # Side-by-side file uploaders
        col1, col2 = st.columns(2)
        
        with col1:
            st.write("First Image")
            file1 = st.file_uploader("Upload first image", type=['jpg', 'jpeg', 'png'], key="file1")
        
        with col2:
            st.write("Second Image")
            file2 = st.file_uploader("Upload second image", type=['jpg', 'jpeg', 'png'], key="file2")
        
        # Set confidence threshold
        conf_threshold = st.slider("Face Detection Confidence", min_value=0.0, max_value=1.0, value=0.5, step=0.05)
        
        # Similarity threshold for considering a match
        similarity_threshold = st.slider("Similarity Threshold (%)", min_value=35.0, max_value=95.0, value=45.0, step=5.0,
                                        help="Minimum percentage of similarity to consider two faces as a match")
        
        # Selección del método de comparación
        comparison_method = st.radio(
            "Facial Comparison Method",
            ["HOG (Fast, effective)", "Embeddings (Slow, more precise)"],
            help="HOG uses histograms of oriented gradients for quick comparison. Embeddings use deep neural networks for greater precision."
        )
        
        # Si se selecciona embeddings, mostrar opciones de modelos y advertencia
        embedding_model = "VGG-Face"
        if comparison_method == "Embeddings (Slow, more precise)" and DEEPFACE_AVAILABLE:
            st.warning("WARNING: The current version of TensorFlow (2.19) may have incompatibilities with some models. It is recommended to use HOG if you experience problems.")
            
            embedding_model = st.selectbox(
                "Embedding model",
                ["VGG-Face", "Facenet", "OpenFace", "ArcFace"],  # Eliminado "DeepFace" de la lista
                help="Select the neural network model to extract facial embeddings"
            )
        elif comparison_method == "Embeddings (Slow, more precise)" and not DEEPFACE_AVAILABLE:
            st.warning("The DeepFace library is not available. Please install with 'pip install deepface' to use embeddings.")
            st.info("Using HOG method by default.")
            comparison_method = "HOG (Fast, effective)"
        
        # Style options
        bbox_color = st.color_picker("Bounding Box Color", "#00FF00")
        # Convert hex color to BGR for OpenCV
        bbox_color_rgb = tuple(int(bbox_color.lstrip('#')[i:i+2], 16) for i in (0, 2, 4))
        bbox_color_bgr = (bbox_color_rgb[2], bbox_color_rgb[1], bbox_color_rgb[0])  # Convert RGB to BGR
        
        # Process the images when both are uploaded
        if file1 is not None and file2 is not None:
            # Read both images
            raw_bytes1 = np.asarray(bytearray(file1.read()), dtype=np.uint8)
            image1 = cv2.imdecode(raw_bytes1, cv2.IMREAD_COLOR)
            
            raw_bytes2 = np.asarray(bytearray(file2.read()), dtype=np.uint8)
            image2 = cv2.imdecode(raw_bytes2, cv2.IMREAD_COLOR)
            
            # Save original images in session_state
            # Use a unique identifier for each file to detect changes
            file1_id = file1.name + str(file1.size)
            file2_id = file2.name + str(file2.size)
            
            if 'file1_id' not in st.session_state or st.session_state.file1_id != file1_id:
                st.session_state.file1_id = file1_id
                st.session_state.original_image1 = image1.copy()
            
            if 'file2_id' not in st.session_state or st.session_state.file2_id != file2_id:
                st.session_state.file2_id = file2_id
                st.session_state.original_image2 = image2.copy()
            
            # Display original images
            with col1:
                st.image(st.session_state.original_image1, channels='BGR', use_container_width=True, caption="Image 1")
            
            with col2:
                st.image(st.session_state.original_image2, channels='BGR', use_container_width=True, caption="Image 2")
            
            # Detect faces in both images
            detections1 = detect_face_dnn(face_net, st.session_state.original_image1, conf_threshold)
            processed_image1, bboxes1 = process_face_detections(st.session_state.original_image1, detections1, conf_threshold, bbox_color_bgr)
            
            detections2 = detect_face_dnn(face_net, st.session_state.original_image2, conf_threshold)
            processed_image2, bboxes2 = process_face_detections(st.session_state.original_image2, detections2, conf_threshold, bbox_color_bgr)
            
            # Display processed images
            st.subheader("Detected Faces")
            proc_col1, proc_col2 = st.columns(2)
            
            with proc_col1:
                st.image(processed_image1, channels='BGR', use_container_width=True, caption="Processed Image 1")
                st.write(f"Faces detected: {len(bboxes1)}")
            
            with proc_col2:
                st.image(processed_image2, channels='BGR', use_container_width=True, caption="Processed Image 2")
                st.write(f"Faces detected: {len(bboxes2)}")
            
            # Compare faces
            if len(bboxes1) == 0 or len(bboxes2) == 0:
                st.warning("Cannot compare: One or both images have no faces detected.")
            else:
                with st.spinner("Comparing faces..."):
                    # Perform face comparison based on selected method
                    if comparison_method == "Embeddings (Slow, more precise)" and DEEPFACE_AVAILABLE:
                        try:
                            st.info(f"Using embedding model: {embedding_model}")
                            comparison_results = compare_faces_embeddings(
                                st.session_state.original_image1, bboxes1,
                                st.session_state.original_image2, bboxes2,
                                model_name=embedding_model
                            )
                        except Exception as e:
                            st.error(f"Error using embeddings: {str(e)}")
                            st.info("Automatically switching to HOG method...")
                            comparison_results = compare_faces(
                                st.session_state.original_image1, bboxes1,
                                st.session_state.original_image2, bboxes2
                            )
                    else:
                        # Usar método HOG tradicional
                        if comparison_method == "Embeddings (Slow, more precise)":
                            st.warning("Using HOG method because DeepFace is not available.")
                        comparison_results = compare_faces(
                            st.session_state.original_image1, bboxes1,
                            st.session_state.original_image2, bboxes2
                        )
                    
                    # Generate comparison report
                    report = generate_comparison_report_english(comparison_results, bboxes1, bboxes2)
                    
                    # Create combined image with match lines
                    combined_image = draw_face_matches(
                        st.session_state.original_image1, bboxes1,
                        st.session_state.original_image2, bboxes2,
                        comparison_results,
                        threshold=similarity_threshold
                    )
                    
                    # Show results
                    st.subheader("Comparison Results")
                    
                    # Show combined image
                    st.image(combined_image, channels='BGR', use_container_width=True, 
                            caption="Visual Comparison (red lines indicate matches above threshold)")
                    
                    # Show similarity statistics
                    st.subheader("Similarity Statistics")
                    
                    # Calculate general statistics
                    all_similarities = []
                    for face_comparisons in comparison_results:
                        for comp in face_comparisons:
                            all_similarities.append(float(comp["similarity"]))
                    
                    if all_similarities:
                        avg_similarity = sum(all_similarities) / len(all_similarities)
                        max_similarity = max(all_similarities)
                        min_similarity = min(all_similarities)
                        
                        # Determinar el nivel de similitud promedio
                        if avg_similarity >= 70:  # Updated from 80 to 70
                            avg_level = "HIGH"
                            avg_color = "normal"
                        elif avg_similarity >= 50:  # Updated from 65 to 50
                            avg_level = "MEDIUM"
                            avg_color = "normal"
                        elif avg_similarity >= 30:  # Updated from 35 to 30
                            avg_level = "LOW"
                            avg_color = "inverse"
                        else:
                            avg_level = "VERY LOW"
                            avg_color = "inverse"
                        
                        # Determinar el nivel de similitud máxima
                        if max_similarity >= 70:  # Updated from 80 to 70
                            max_level = "HIGH"
                            max_color = "normal"
                        elif max_similarity >= 50:  # Updated from 65 to 50
                            max_level = "MEDIUM"
                            max_color = "normal"
                        elif max_similarity >= 30:  # Updated from 35 to 30
                            max_level = "LOW"
                            max_color = "inverse"
                        else:
                            max_level = "VERY LOW"
                            max_color = "inverse"
                        
                        # Show metrics with color coding
                        col1, col2, col3 = st.columns(3)
                        col1.metric("Average Similarity", f"{avg_similarity:.2f}%", 
                                   delta=avg_level, delta_color=avg_color)
                        col2.metric("Maximum Similarity", f"{max_similarity:.2f}%", 
                                   delta=max_level, delta_color=max_color)
                        col3.metric("Minimum Similarity", f"{min_similarity:.2f}%")
                        
                        # Count matches above threshold
                        matches_above_threshold = sum(1 for s in all_similarities if s >= similarity_threshold)
                        st.metric(f"Matches above threshold ({similarity_threshold}%)", matches_above_threshold)
                        
                        # Determine if there are significant matches
                        best_matches = [face_comp[0] for face_comp in comparison_results if face_comp]
                        if any(float(match["similarity"]) >= similarity_threshold for match in best_matches):
                            if any(float(match["similarity"]) >= 70 for match in best_matches):  # Updated from 80 to 70
                                st.success("CONCLUSION: HIGH similarity matches found between images.")
                            elif any(float(match["similarity"]) >= 50 for match in best_matches):  # Updated from 65 to 50
                                st.info("CONCLUSION: MEDIUM similarity matches found between images.")
                            else:
                                st.warning("CONCLUSION: LOW similarity matches found between images.")
                        else:
                            st.error("CONCLUSION: No significant matches found between images.")
                        
                        # Añadir gráfico de distribución de similitud
                        st.subheader("Similarity Distribution")
                        
                        # Crear histograma de similitudes
                        fig, ax = plt.subplots(figsize=(10, 4))
                        bins = [0, 30, 50, 70, 100]  # Updated from [0, 35, 65, 80, 100]
                        labels = ['Very Low', 'Low', 'Medium', 'High']
                        colors = ['darkred', 'red', 'orange', 'green']
                        
                        # Contar cuántos valores caen en cada rango
                        hist_data = [sum(1 for s in all_similarities if bins[i] <= s < bins[i+1]) for i in range(len(bins)-1)]
                        
                        # Crear gráfico de barras
                        bars = ax.bar(labels, hist_data, color=colors)
                        
                        # Añadir etiquetas
                        ax.set_xlabel('Similarity Level')
                        ax.set_ylabel('Number of Comparisons')
                        ax.set_title('Similarity Level Distribution')
                        
                        # Añadir valores sobre las barras
                        for bar in bars:
                            height = bar.get_height()
                            ax.text(bar.get_x() + bar.get_width()/2., height + 0.1,
                                   f'{int(height)}', ha='center', va='bottom')
                        
                        st.pyplot(fig)
                    
                    # Show detailed report in an expandable section
                    with st.expander("View Detailed Report"):
                        st.write(report)
                    
                    # Provide option to download the report
                    st.download_button(
                        label="📥 Download Comparison Report",
                        data=report,
                        file_name="face_comparison_report.txt",
                        mime="text/plain"
                    )
                    
                    # Provide option to download the combined image
                    pil_combined_img = Image.fromarray(combined_image[:, :, ::-1])
                    buf = BytesIO()
                    pil_combined_img.save(buf, format="JPEG")
                    byte_im = buf.getvalue()
                    
                    st.download_button(
                        label="📥 Download Comparison Image",
                        data=byte_im,
                        file_name="face_comparison.jpg",
                        mime="image/jpeg"
                    )

    # Add a help text for eye detection sensitivity in the Feature Detection mode
    if app_mode == "Feature Detection":
        st.sidebar.markdown("**Eye Detection Settings**")
        st.sidebar.info("Adjust the slider to change the sensitivity of eye detection. A higher value will detect more eyes but may generate false positives.")

    elif app_mode == "Face Recognition":
        st.title("Face Recognition System")
        st.markdown("""
        This module allows you to register faces and recognize them later in real-time or in images.
        It uses facial embeddings for accurate identification.
        """)
        
        # Verificar si DeepFace está disponible
        if not DEEPFACE_AVAILABLE:
            st.error("DeepFace is not available. Please install the library with 'pip install deepface'")
            st.stop()
        
        # Load el modelo de detección facial
        face_net = load_face_model()
        
        # Inicializar base de datos de rostros si no existe
        if 'face_database' not in st.session_state:
            if DATABASE_UTILS_AVAILABLE:
                # Cargar la base de datos desde el archivo persistente
                st.session_state.face_database = load_face_database()
                st.sidebar.write(f"Loaded face database with {len(st.session_state.face_database)} entries")
            else:
                st.session_state.face_database = {}
        
        # Imprimir información de depuración
        if DATABASE_UTILS_AVAILABLE:
            print_database_info()
        
        # Crear pestañas para las diferentes funcionalidades
        tab1, tab2, tab3 = st.tabs(["Register Face", "Image Recognition", "Real-time Recognition"])
        
        with tab1:
            st.header("Register New Face")
            
            # Add file uploader for image
            uploaded_file = st.file_uploader("Upload an image", type=['jpg', 'jpeg', 'png'], key="register_face_image")
            
            # Registration form
            with st.form("face_registration_form"):
                person_name = st.text_input("Person's name", key="person_name")
                
                # Model selector
                model_choice = st.selectbox(
                    "Embedding model",
                    ["VGG-Face", "Facenet", "OpenFace", "ArcFace"],
                    index=0
                )
                
                # Confidence threshold adjustment
                confidence_threshold = st.slider(
                    "Detection Confidence",
                    min_value=0.0,
                    max_value=1.0,
                    value=0.5,
                    step=0.01
                )
                
                # Option to add to existing person
                add_to_existing = st.checkbox(
                    "Add to existing person"
                )
                
                # Register button
                register_button = st.form_submit_button("Register Face")
            
            if register_button:
                # Validate name provided
                if not person_name:
                    st.error("Person's name is required. Please enter a name.")
                elif uploaded_file is None:
                    st.error("Please upload an image.")
                else:
                    # Mostrar spinner durante el procesamiento
                    with st.spinner('Processing image and extracting facial features...'):
                        # Process imagen
                        raw_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
                        image = cv2.imdecode(raw_bytes, cv2.IMREAD_COLOR)
                        
                        # Detect rostros
                        face_net = load_face_model()
                        detections = detect_face_dnn(face_net, image, conf_threshold=confidence_threshold)
                        
                        # Procesar detecciones y obtener bounding boxes
                        processed_image, bboxes = process_face_detections(image, detections, confidence_threshold)
                        
                        if not bboxes:
                            st.error("No faces detected in the image. Please upload another image.")
                        elif len(bboxes) > 1:
                            st.warning("Multiple faces detected. The first one will be used.")
                            
                            # Extraer embeddings del primer rostro
                            if bboxes and len(bboxes) > 0 and len(bboxes[0]) == 5:
                                embeddings_all_models = extract_face_embeddings_all_models(image, bboxes[0])
                                
                                if embeddings_all_models:
                                    # Guardar la imagen del rostro para referencia
                                    x1, y1, x2, y2, _ = bboxes[0]
                                    # Validar coordenadas
                                    x1, y1 = max(0, x1), max(0, y1)
                                    x2, y2 = min(image.shape[1], x2), min(image.shape[0], y2)
                                    
                                    if x2 > x1 and y2 > y1:
                                        face_crop = image[y1:y2, x1:x2].copy()
                                        # Asegurar un tamaño mínimo para el rostro
                                        if face_crop.size > 0:
                                            min_size = 64
                                            face_h, face_w = face_crop.shape[:2]
                                            if face_h < min_size or face_w < min_size:
                                                scale = max(min_size/face_h, min_size/face_w)
                                                face_crop = cv2.resize(face_crop, 
                                                                     (max(min_size, int(face_w * scale)), 
                                                                      max(min_size, int(face_h * scale))))
                                    else:
                                        st.error("Invalid face region detected. Please try again with a clearer image.")
                                        return
                                    
                                    # Guardar en la base de datos
                                    if add_to_existing and person_name in st.session_state.face_database:
                                        # Añadir a persona existente
                                        if 'embeddings' in st.session_state.face_database[person_name]:
                                            # Formato nuevo con múltiples embeddings
                                            for embedding in embeddings_all_models:
                                                model_name = embedding['model']
                                                model_idx = -1
                                                
                                                # Buscar si ya existe un embedding de este modelo
                                                for i, model in enumerate(st.session_state.face_database[person_name]['models']):
                                                    if model == model_name:
                                                        model_idx = i
                                                        break
                                                
                                                if model_idx >= 0:
                                                    # Actualizar embedding existente
                                                    st.session_state.face_database[person_name]['embeddings'][model_idx] = embedding['embedding']
                                                else:
                                                    # Añadir nuevo modelo
                                                    st.session_state.face_database[person_name]['models'].append(model_name)
                                                    st.session_state.face_database[person_name]['embeddings'].append(embedding['embedding'])
                                            
                                            # Actualizar imagen de referencia
                                            st.session_state.face_database[person_name]['face_image'] = face_crop
                                        
                                        # Incrementar contador
                                        st.session_state.face_database[person_name]['count'] += 1
                                    else:
                                        # Crear nueva entrada en la base de datos
                                        st.sidebar.write(f"Creating new entry for {person_name}")
                                        
                                        models = []
                                        embeddings = []
                                        
                                        for embedding in embeddings_all_models:
                                            models.append(embedding['model'])
                                            embeddings.append(embedding['embedding'])
                                        
                                        st.session_state.face_database[person_name] = {
                                            'embeddings': embeddings,
                                            'models': models,
                                            'count': 1,
                                            'face_image': face_crop
                                        }
                                    
                                    st.success(f"Face registered successfully for {person_name}!")
                                    
                                    # Guardar la base de datos actualizada
                                    if DATABASE_UTILS_AVAILABLE:
                                        save_success = save_face_database(st.session_state.face_database)
                                        if save_success:
                                            st.info("Face database saved successfully!")
                                            # Mostrar información actualizada de la base de datos
                                            print_database_info()
                                        else:
                                            st.error("Error saving face database!")
                                    
                                    # Mostrar la imagen con el rostro detectado
                                    processed_image, _ = process_face_detections(image, [bboxes[0]], confidence_threshold)
                                    st.image(cv2.cvtColor(processed_image, cv2.COLOR_BGR2RGB), caption=f"Registered face: {person_name}")
                                    
                                    # Forzar recarga de la interfaz para mostrar el rostro registrado
                                    st.rerun()
                                else:
                                    st.error("Failed to extract embeddings. Please try again with a clearer image.")
                        else:
                            # Solo un rostro detectado
                            embeddings_all_models = extract_face_embeddings_all_models(image, bboxes[0])
                            
                            if embeddings_all_models:
                                # Extraer la región del rostro para guardarla
                                x1, y1, x2, y2, _ = bboxes[0]
                                # Validar coordenadas
                                x1, y1 = max(0, x1), max(0, y1)
                                x2, y2 = min(image.shape[1], x2), min(image.shape[0], y2)
                                
                                if x2 > x1 and y2 > y1:
                                    face_crop = image[y1:y2, x1:x2].copy()
                                    # Asegurar un tamaño mínimo para el rostro
                                    if face_crop.size > 0:
                                        min_size = 64
                                        face_h, face_w = face_crop.shape[:2]
                                        if face_h < min_size or face_w < min_size:
                                            scale = max(min_size/face_h, min_size/face_w)
                                            face_crop = cv2.resize(face_crop, 
                                                                 (max(min_size, int(face_w * scale)), 
                                                                  max(min_size, int(face_h * scale))))
                                    else:
                                        st.error("Invalid face region detected. Please try again with a clearer image.")
                                        return
                                    
                                    # Guardar en la base de datos
                                    if add_to_existing and person_name in st.session_state.face_database:
                                        # Añadir a persona existente
                                        if 'embeddings' in st.session_state.face_database[person_name]:
                                            # Formato nuevo con múltiples embeddings
                                            for embedding in embeddings_all_models:
                                                model_name = embedding['model']
                                                model_idx = -1
                                                
                                                # Buscar si ya existe un embedding de este modelo
                                                for i, model in enumerate(st.session_state.face_database[person_name]['models']):
                                                    if model == model_name:
                                                        model_idx = i
                                                        break
                                                
                                                if model_idx >= 0:
                                                    # Actualizar embedding existente
                                                    st.session_state.face_database[person_name]['embeddings'][model_idx] = embedding['embedding']
                                                else:
                                                    # Añadir nuevo modelo
                                                    st.session_state.face_database[person_name]['models'].append(model_name)
                                                    st.session_state.face_database[person_name]['embeddings'].append(embedding['embedding'])
                                            
                                            # Actualizar imagen de referencia
                                            st.session_state.face_database[person_name]['face_image'] = face_crop
                                        
                                        # Incrementar contador
                                        st.session_state.face_database[person_name]['count'] += 1
                                    else:
                                        # Crear nueva entrada en la base de datos
                                        st.sidebar.write(f"Creating new entry for {person_name}")
                                        
                                        models = []
                                        embeddings = []
                                        
                                        for embedding in embeddings_all_models:
                                            models.append(embedding['model'])
                                            embeddings.append(embedding['embedding'])
                                        
                                        st.session_state.face_database[person_name] = {
                                            'embeddings': embeddings,
                                            'models': models,
                                            'count': 1,
                                            'face_image': face_crop
                                        }
                                    
                                    st.success(f"Face registered successfully for {person_name}!")
                                
                                # Guardar la base de datos actualizada
                                if DATABASE_UTILS_AVAILABLE:
                                    save_success = save_face_database(st.session_state.face_database)
                                    if save_success:
                                        st.info("Face database saved successfully!")
                                        # Mostrar información actualizada de la base de datos
                                        print_database_info()
                                    else:
                                        st.error("Error saving face database!")
                                
                                # Mostrar la imagen con el rostro detectado
                                processed_image, _ = process_face_detections(image, [bboxes[0]], confidence_threshold)
                                st.image(cv2.cvtColor(processed_image, cv2.COLOR_BGR2RGB), caption=f"Registered face: {person_name}")
                                
                                # Forzar recarga de la interfaz para mostrar el rostro registrado
                                st.rerun()
                            else:
                                st.error("Failed to extract embeddings. Please try again with a clearer image.")
            
            # Mostrar tabla de rostros registrados
            st.subheader("Registered Faces")
            
            # Debug de contenido de base de datos
            st.sidebar.write(f"Face database contains {len(st.session_state.face_database)} entries at display time")
            
            if 'face_database' in st.session_state and st.session_state.face_database:
                # Inicializar variables para la tabla
                data = []
                
                # Preparar datos para la tabla
                for name, info in st.session_state.face_database.items():
                    try:
                        # Determinar el número de embeddings
                        if 'embeddings' in info:
                            num_embeddings = len(info['embeddings'])
                            models = ', '.join(info['models'])
                        else:
                            num_embeddings = 1
                            models = 'VGG-Face'  # Modelo por defecto para formato antiguo
                        
                        # Determinar el número de imágenes
                        num_images = info.get('count', 1)
                        
                        # Validar y preparar la imagen facial
                        face_image = info.get('face_image', None)
                        if face_image is not None:
                            if isinstance(face_image, np.ndarray) and face_image.size > 0:
                                # Asegurar que la imagen sea válida y tenga el formato correcto
                                if len(face_image.shape) == 2:  # Si es grayscale
                                    face_image = cv2.cvtColor(face_image, cv2.COLOR_GRAY2BGR)
                                elif len(face_image.shape) == 3 and face_image.shape[2] == 4:  # Si tiene canal alpha
                                    face_image = cv2.cvtColor(face_image, cv2.COLOR_BGRA2BGR)
                            else:
                                face_image = None
                        
                        # Añadir a los datos
                        data.append({
                            "Name": name,
                            "Images": num_images,
                            "Embeddings": num_embeddings,
                            "Models": models,
                            "Face": face_image
                        })
                    except Exception as e:
                        st.error(f"Error processing entry for {name}: {str(e)}")
                        continue
                
                # Debug de los datos procesados
                st.sidebar.write(f"Processed {len(data)} entries for display")
                
                # Verificar si hay datos para mostrar
                if data:
                    # Crear cabeceras de la tabla
                    col_thumb, col1, col2, col3, col4, col5 = st.columns([2, 3, 2, 2, 4, 2])
                    
                    with col_thumb:
                        st.write("**Thumbnail**")
                    with col1:
                        st.write("**Name**")
                    with col2:
                        st.write("**Images**")
                    with col3:
                        st.write("**Embeddings**")
                    with col4:
                        st.write("**Models**")
                    with col5:
                        st.write("**Actions**")
                    
                    # Mostrar tabla con botones de eliminación
                    for i, row in enumerate(data):
                        col_thumb, col1, col2, col3, col4, col5 = st.columns([2, 3, 2, 2, 4, 2])
                        
                        # Mostrar miniatura si está disponible
                        with col_thumb:
                            if row["Face"] is not None:
                                try:
                                    # Validar la imagen antes de redimensionar
                                    face_img = row["Face"]
                                    if isinstance(face_img, np.ndarray) and face_img.size > 0 and len(face_img.shape) >= 2:
                                        h, w = face_img.shape[:2]
                                        if h > 0 and w > 0:
                                            # Calcular nuevo tamaño manteniendo el aspect ratio
                                            target_width = 50
                                            aspect_ratio = float(w) / float(h)
                                            target_height = int(target_width / aspect_ratio)
                                            
                                            # Asegurar dimensiones mínimas
                                            target_width = max(1, target_width)
                                            target_height = max(1, target_height)
                                            
                                            # Redimensionar usando INTER_AREA para mejor calidad en reducción
                                            thumbnail = cv2.resize(face_img, 
                                                                 (target_width, target_height), 
                                                                 interpolation=cv2.INTER_AREA)
                                            
                                            # Convertir a RGB si es necesario
                                            if len(thumbnail.shape) == 2:  # Si es grayscale
                                                thumbnail = cv2.cvtColor(thumbnail, cv2.COLOR_GRAY2RGB)
                                            elif thumbnail.shape[2] == 4:  # Si tiene canal alpha
                                                thumbnail = cv2.cvtColor(thumbnail, cv2.COLOR_BGRA2RGB)
                                            else:
                                                thumbnail = cv2.cvtColor(thumbnail, cv2.COLOR_BGR2RGB)
                                            
                                            st.image(thumbnail, width=50)
                                        else:
                                            st.write("Invalid dimensions")
                                    else:
                                        st.write("Invalid image format")
                                except Exception as e:
                                    st.write("Error displaying image")
                                    st.error(f"Error: {str(e)}")
                            else:
                                st.write("No image")
                        
                        with col1:
                            st.write(row["Name"])
                        with col2:
                            st.write(row["Images"])
                        with col3:
                            st.write(row["Embeddings"])
                        with col4:
                            st.write(row["Models"])
                        with col5:
                            if st.button("Delete", key=f"delete_{row['Name']}"):
                                # Eliminar el registro
                                if row["Name"] in st.session_state.face_database:
                                    del st.session_state.face_database[row["Name"]]
                                    
                                    # Guardar la base de datos actualizada
                                    if DATABASE_UTILS_AVAILABLE:
                                        save_face_database(st.session_state.face_database)
                                    
                                    st.success(f"Deleted {row['Name']} from the database.")
                                    st.rerun()
                    
                    # Botón para eliminar todos los registros
                    if st.button("Delete All Registered Faces"):
                        # Mostrar confirmación
                        if 'confirm_delete_all' not in st.session_state:
                            st.session_state.confirm_delete_all = False
                        
                        if not st.session_state.confirm_delete_all:
                            st.warning("Are you sure you want to delete all registered faces? This action cannot be undone.")
                            col1, col2 = st.columns(2)
                            with col1:
                                if st.button("Yes, delete all"):
                                    st.session_state.face_database = {}
                                    
                                    # Guardar la base de datos vacía
                                    if DATABASE_UTILS_AVAILABLE:
                                        save_face_database({})
                                    
                                    st.session_state.confirm_delete_all = False
                                    st.success("All registered faces have been deleted.")
                                    st.rerun()
                            with col2:
                                if st.button("Cancel"):
                                    st.session_state.confirm_delete_all = False
                                    st.rerun()
                else:
                    st.info("No faces registered yet. Use the form above to register faces.")
            else:
                st.info("No faces registered yet. Use the form above to register faces.")
            
            # Añadir botones para importar/exportar la base de datos
            if DATABASE_UTILS_AVAILABLE:
                st.subheader("Database Management")
                col1, col2 = st.columns(2)
                
                with col1:
                    # Exportar base de datos
                    if st.button("Export Face Database") and st.session_state.face_database:
                        export_file = export_database_json()
                        if export_file:
                            with open(export_file, "rb") as f:
                                st.download_button(
                                    label="Download JSON Database",
                                    data=f,
                                    file_name="face_database.json",
                                    mime="application/json"
                                )
                
                with col2:
                    # Importar base de datos
                    uploaded_json = st.file_uploader("Import Face Database", type=["json"], key="import_database")
                    if uploaded_json is not None:
                        if st.button("Process Import"):
                            with st.spinner("Importing database..."):
                                imported_db = import_database_json(uploaded_json)
                                if imported_db:
                                    # Actualizar la base de datos actual
                                    st.session_state.face_database.update(imported_db)
                                    
                                    # Guardar la base de datos actualizada
                                    if save_face_database(st.session_state.face_database):
                                        st.success("Database imported and saved successfully!")
                                        st.rerun()
        
        with tab2:
            st.header("Image Recognition")
            
            # Verificar si hay rostros registrados
            if not st.session_state.face_database:
                st.warning("No faces registered. Please register at least one face first.")
            else:
                # Subir imagen para reconocimiento
                uploaded_file = st.file_uploader("Upload image for recognition", type=['jpg', 'jpeg', 'png'], key="recognition_image")
                
                # Configuración avanzada
                with st.expander("Advanced Settings", expanded=False):
                    # Configuración de umbral de similitud
                    similarity_threshold = st.slider(
                        "Similarity threshold (%)", 
                        min_value=35.0, 
                        max_value=95.0, 
                        value=45.0, 
                        step=5.0,
                        help="Minimum percentage of similarity to consider a match"
                    )
                    
                    confidence_threshold = st.slider(
                        "Detection Confidence", 
                        min_value=0.3, 
                        max_value=0.9, 
                        value=0.5, 
                        step=0.05,
                        help="Un valor más alto es más restrictivo pero más preciso"
                    )
                    
                    model_choice = st.selectbox(
                        "Embedding model", 
                        ["VGG-Face", "Facenet", "OpenFace", "ArcFace"],
                        help="Diferentes modelos pueden dar resultados distintos según las características faciales"
                    )
                    
                    voting_method = st.radio(
                        "Método de votación para múltiples embeddings",
                        ["Promedio", "Mejor coincidencia", "Votación ponderada"],
                        help="Cómo combinar resultados cuando hay múltiples imágenes de una persona"
                    )
                    
                    show_all_matches = st.checkbox(
                        "Mostrar todas las coincidencias", 
                        value=False,
                        help="Mostrar las 3 mejores coincidencias para cada rostro"
                    )
                
                if uploaded_file is not None:
                    # Mostrar spinner durante el procesamiento
                    with st.spinner('Processing image and analyzing faces...'):
                        # Process la imagen subida
                        raw_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
                        image = cv2.imdecode(raw_bytes, cv2.IMREAD_COLOR)
                        
                        # Detect rostros
                        detections = detect_face_dnn(face_net, image, confidence_threshold)
                        processed_image, bboxes = process_face_detections(image, detections, confidence_threshold)
                        
                        if not bboxes:
                            st.error("No se detectaron rostros en la imagen.")
                            # Inicializar result_image aunque no haya rostros
                            result_image = image.copy()
                        else:
                            # Mostrar imagen con rostros detectados
                            st.image(processed_image, channels='BGR', caption="Faces detected")
                            
                            # Reconocer cada rostro
                            result_image = image.copy()
                            
                            # Crear columnas para mostrar estadísticas
                            stats_cols = st.columns(len(bboxes) if len(bboxes) <= 3 else 3)
                            
                            for i, bbox in enumerate(bboxes):
                                # Extraer embedding del rostro
                                embedding = extract_face_embeddings(image, bbox, model_name=model_choice)
                                
                                if embedding is not None:
                                    # Compare con rostros registrados
                                    matches = []
                                    
                                    for name, info in st.session_state.face_database.items():
                                        if 'embeddings' in info:
                                            # Nuevo formato con múltiples embeddings
                                            similarities = []
                                            
                                            for idx, registered_embedding in enumerate(info['embeddings']):
                                                # Usar el mismo modelo si es posible
                                                if info['models'][idx] == model_choice:
                                                    weight = 1.0  # Dar más peso a embeddings del mismo modelo
                                                else:
                                                    weight = 0.8  # Peso menor para embeddings de otros modelos
                                                    
                                                # Asegurarse de que los embeddings sean compatibles
                                                try:
                                                    similarity = cosine_similarity([embedding["embedding"]], [registered_embedding])[0][0] * 100 * weight
                                                    similarities.append(similarity)
                                                except ValueError as e:
                                                    # Si hay error de dimensiones incompatibles, omitir esta comparación
                                                    # Modelos incompatibles: {info['models'][idx]} vs {embedding['model']}
                                                    continue
                                            
                                            # Aplicar método de votación seleccionado
                                            if voting_method == "Promedio":
                                                if similarities:  # Verificar que la lista no esté vacía
                                                    final_similarity = sum(similarities) / len(similarities)
                                                else:
                                                    final_similarity = 0.0  # Valor predeterminado si no hay similitudes
                                            elif voting_method == "Mejor coincidencia":
                                                if similarities:  # Verificar que la lista no esté vacía
                                                    final_similarity = max(similarities)
                                                else:
                                                    final_similarity = 0.0  # Valor predeterminado si no hay similitudes
                                            else:  # Votación ponderada
                                                if similarities:  # Verificar que la lista no esté vacía
                                                    # Dar más peso a similitudes más altas
                                                    weighted_sum = sum(s * (i+1) for i, s in enumerate(sorted(similarities)))
                                                    weights_sum = sum(i+1 for i in range(len(similarities)))
                                                    final_similarity = weighted_sum / weights_sum
                                                else:
                                                    final_similarity = 0.0  # Valor predeterminado si no hay similitudes
                                            
                                            matches.append({"name": name, "similarity": final_similarity, "count": info['count']})
                                        else:
                                            # Formato antiguo con un solo embedding
                                            registered_embedding = info['embedding']
                                            try:
                                                similarity = cosine_similarity([embedding["embedding"]], [registered_embedding])[0][0] * 100
                                                matches.append({"name": name, "similarity": similarity, "count": 1})
                                            except ValueError as e:
                                                # Si hay error de dimensiones incompatibles, omitir esta comparación
                                                # Modelos incompatibles: {embedding['model']} vs formato antiguo
                                                continue
                                
                                # Ordenar coincidencias por similitud
                                matches.sort(key=lambda x: x["similarity"], reverse=True)
                                
                                # Dibujar resultado en la imagen
                                x1, y1, x2, y2, _ = bbox
                                
                                if matches and matches[0]["similarity"] >= similarity_threshold:
                                    # Coincidencia encontrada
                                    best_match = matches[0]
                                    
                                    # Color basado en nivel de similitud
                                    if best_match["similarity"] >= 80:
                                        color = (0, 255, 0)  # Verde para alta similitud
                                    elif best_match["similarity"] >= 65:
                                        color = (0, 255, 255)  # Amarillo para media similitud
                                    else:
                                        color = (0, 165, 255)  # Naranja para baja similitud
                                    
                                    # Dibujar rectángulo y etiqueta principal
                                    label = f"{best_match['name']}: {best_match['similarity']:.1f}%"
                                    cv2.rectangle(result_image, (x1, y1), (x2, y2), color, 2)
                                    cv2.putText(result_image, label, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
                                    
                                    # Mostrar coincidencias adicionales si está activado
                                    if show_all_matches and len(matches) > 1:
                                        for j, match in enumerate(matches[1:3]):  # Mostrar las siguientes 2 mejores coincidencias
                                            sub_label = f"#{j+2}: {match['name']}: {match['similarity']:.1f}%"
                                            cv2.putText(result_image, sub_label, (x1, y1-(j+2)*20), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (200, 200, 200), 1)
                                    
                                    # Mostrar estadísticas en columnas
                                    col_idx = i % 3
                                    with stats_cols[col_idx]:
                                        st.metric(
                                            f"Rostro {i+1}", 
                                            f"{best_match['name']}",
                                            f"{best_match['similarity']:.1f}%"
                                        )
                                        
                                        # Guardar información para mostrar la imagen de referencia después
                                        if 'matched_faces' not in st.session_state:
                                            st.session_state.matched_faces = []
                                        
                                        # Extraer la región del rostro para mostrarla
                                        face_crop = image[y1:y2, x1:x2].copy()
                                        
                                        # Guardar información de la coincidencia
                                        st.session_state.matched_faces.append({
                                            "face_crop": face_crop,
                                            "matched_name": best_match['name'],
                                            "similarity": best_match['similarity'],
                                            "bbox": (x1, y1, x2, y2)
                                        })
                                        
                                        if show_all_matches and len(matches) > 1:
                                            st.write("Otras coincidencias:")
                                            for j, match in enumerate(matches[1:3]):
                                                st.write(f"- {match['name']}: {match['similarity']:.1f}%")
                                else:
                                    # No hay coincidencia
                                    label = "Desconocido"
                                    if matches:
                                        label += f": {matches[0]['similarity']:.1f}%"
                                    
                                    cv2.rectangle(result_image, (x1, y1), (x2, y2), (0, 0, 255), 2)
                                    cv2.putText(result_image, label, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
                                    
                                    # Mostrar estadísticas en columnas
                                    col_idx = i % 3
                                    with stats_cols[col_idx]:
                                        st.metric(
                                            f"Rostro {i+1}", 
                                            "Desconocido",
                                            f"{matches[0]['similarity']:.1f}%" if matches else "N/A"
                                        )
                
                # Mostrar resultado solo si hay una imagen cargada
                if uploaded_file is not None:
                    st.subheader("Recognition Result")
                    st.image(result_image, channels='BGR', use_container_width=True)
                    
                    # Mostrar comparación lado a lado de cada rostro con su coincidencia
                    if 'matched_faces' in st.session_state and st.session_state.matched_faces:
                        st.subheader("Face Comparison")
                        st.write("Below you can see each detected face alongside its match in the database:")
                        
                        for idx, match_info in enumerate(st.session_state.matched_faces):
                            # Crear contenedor para la comparación
                            comparison_container = st.container()
                            
                            # Crear columnas dentro del contenedor
                            with comparison_container:
                                comp_col1, comp_col2 = st.columns(2)
                                
                                # Mostrar el rostro detectado
                                with comp_col1:
                                    st.write(f"**Detected Face #{idx+1}**")
                                    st.image(
                                        cv2.cvtColor(match_info["face_crop"], cv2.COLOR_BGR2RGB),
                                        width=250  # Usar ancho fijo en lugar de use_column_width
                                    )
                                
                                # Mostrar imagen de referencia si existe
                                with comp_col2:
                                    reference_name = match_info["matched_name"]
                                    st.write(f"**Match: {reference_name}** ({match_info['similarity']:.1f}%)")
                                    
                                    # Intentar mostrar la imagen de referencia guardada
                                    if reference_name in st.session_state.face_database and 'face_image' in st.session_state.face_database[reference_name]:
                                        reference_image = st.session_state.face_database[reference_name]['face_image']
                                        st.image(
                                            cv2.cvtColor(reference_image, cv2.COLOR_BGR2RGB),
                                            width=250  # Usar ancho fijo en lugar de use_column_width
                                        )
                                    else:
                                        # Mensaje de error simplificado
                                        st.info(f"No reference image available for {reference_name}. Please re-register this person.")
                          
                          # Limpiar el estado para la próxima ejecución
                        del st.session_state.matched_faces
        
        with tab3:
            st.header("Real-time Recognition")
            
            # Check if there are registered faces
            if not st.session_state.face_database:
                st.warning("No faces registered. Please register at least one face first.")
            else:
                # Advanced settings
                with st.expander("Advanced Settings", expanded=False):
                    similarity_threshold = st.slider(
                        "Similarity threshold (%)", 
                        min_value=35.0, 
                        max_value=95.0, 
                        value=45.0, 
                        step=5.0,
                        key="realtime_threshold",
                        help="Minimum percentage of similarity to consider a match"
                    )
                    
                    confidence_threshold = st.slider(
                        "Detection Confidence", 
                        min_value=0.3, 
                        max_value=0.9, 
                        value=0.5, 
                        step=0.05,
                        key="realtime_confidence",
                        help="Higher value is more restrictive but more accurate"
                    )
                    
                    model_choice = st.selectbox(
                        "Embedding model", 
                        ["VGG-Face", "Facenet", "OpenFace", "ArcFace"],
                        key="realtime_model",
                        help="Different models may give different results based on facial features"
                    )
                    
                    voting_method = st.radio(
                        "Voting method for multiple embeddings",
                        ["Average", "Best match", "Weighted voting"],
                        key="realtime_voting",
                        help="How to combine results when there are multiple images of a person"
                    )
                    
                    show_confidence = st.checkbox(
                        "Show confidence percentage", 
                        value=True,
                        help="Show similarity percentage next to the name"
                    )
                    
                    stabilize_results = st.checkbox(
                        "Stabilize results", 
                        value=True,
                        help="Reduce identification fluctuations using temporal averaging"
                    )
                    
                    fps_limit = st.slider(
                        "FPS Limit", 
                        min_value=5, 
                        max_value=30, 
                        value=15, 
                        step=1,
                        help="Limit frames per second to reduce CPU usage"
                    )

                # Initialize states
                if 'recognition_camera_running' not in st.session_state:
                    st.session_state.recognition_camera_running = False
                
                if 'recognition_history' not in st.session_state:
                    st.session_state.recognition_history = {}

                # Camera control buttons
                col1, col2 = st.columns(2)
                start_button = col1.button("Start Camera", key="start_recognition_camera",
                                          on_click=lambda: setattr(st.session_state, 'recognition_camera_running', True))
                stop_button = col2.button("Stop Camera", key="stop_recognition_camera",
                                         on_click=lambda: setattr(st.session_state, 'recognition_camera_running', False))

                # Video and metrics placeholders
                video_placeholder = st.empty()
                metrics_cols = st.columns(3)
                with metrics_cols[0]:
                    faces_metric = st.empty()
                with metrics_cols[1]:
                    fps_metric = st.empty()
                with metrics_cols[2]:
                    time_metric = st.empty()

                if st.session_state.recognition_camera_running:
                    try:
                        st.info("Camera activated. Processing video in real-time...")
                        cap = init_camera()
                        if cap is not None:
                            try:
                                # Process video frames
                                pass
                            finally:
                                cap.release()
                    except Exception as e:
                        st.error(str(e))
                        st.session_state.recognition_camera_running = False
                    finally:
                        if 'cap' in locals() and cap is not None:
                            cap.release()
                else:
                    st.info("Click 'Start Camera' to begin real-time recognition.")

# Si se ejecuta este archivo directamente, llamar a la función main
if __name__ == "__main__":
    main()