Spaces:
Running
Running
Commit
·
c95c949
1
Parent(s):
c48afaa
Implementar guardado y carga de imágenes faciales de referencia en la base de datos
Browse files- face_database_utils.py +52 -0
face_database_utils.py
CHANGED
|
@@ -36,10 +36,18 @@ def save_face_database(database):
|
|
| 36 |
serializable_db[name]['embeddings'] = [emb.tolist() if isinstance(emb, np.ndarray) else emb for emb in info['embeddings']]
|
| 37 |
serializable_db[name]['models'] = info['models']
|
| 38 |
serializable_db[name]['count'] = info['count']
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
elif 'embedding' in info:
|
| 40 |
# Formato antiguo
|
| 41 |
serializable_db[name]['embedding'] = info['embedding'].tolist() if isinstance(info['embedding'], np.ndarray) else info['embedding']
|
| 42 |
serializable_db[name]['count'] = info.get('count', 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
# Guardar en un archivo pickle
|
| 45 |
with open(DATABASE_FILE, 'wb') as f:
|
|
@@ -71,8 +79,14 @@ def load_face_database():
|
|
| 71 |
for name, info in database.items():
|
| 72 |
if 'embeddings' in info:
|
| 73 |
database[name]['embeddings'] = [np.array(emb) if isinstance(emb, list) else emb for emb in info['embeddings']]
|
|
|
|
|
|
|
|
|
|
| 74 |
elif 'embedding' in info:
|
| 75 |
database[name]['embedding'] = np.array(info['embedding']) if isinstance(info['embedding'], list) else info['embedding']
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
return database
|
| 78 |
except Exception as e:
|
|
@@ -99,11 +113,25 @@ def export_database_json():
|
|
| 99 |
]
|
| 100 |
serializable_db[name]['models'] = info['models']
|
| 101 |
serializable_db[name]['count'] = info['count']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
elif 'embedding' in info:
|
| 103 |
serializable_db[name]['embedding'] = base64.b64encode(
|
| 104 |
np.array(info['embedding']).tobytes()
|
| 105 |
).decode('utf-8')
|
| 106 |
serializable_db[name]['count'] = info.get('count', 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
# Guardar en un archivo JSON
|
| 109 |
export_file = "face_database_export.json"
|
|
@@ -137,10 +165,22 @@ def import_database_json(json_file):
|
|
| 137 |
np.frombuffer(base64.b64decode(emb), dtype=np.float32)
|
| 138 |
for emb in info['embeddings']
|
| 139 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
elif 'embedding' in info:
|
| 141 |
imported_db[name]['embedding'] = np.frombuffer(
|
| 142 |
base64.b64decode(info['embedding']), dtype=np.float32
|
| 143 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
return imported_db
|
| 146 |
except Exception as e:
|
|
@@ -169,7 +209,19 @@ def print_database_info():
|
|
| 169 |
st.sidebar.write(f"- Has {len(first_entry['embeddings'])} embeddings")
|
| 170 |
st.sidebar.write(f"- Models: {', '.join(first_entry['models'])}")
|
| 171 |
st.sidebar.write(f"- Count: {first_entry['count']}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
elif 'embedding' in first_entry:
|
| 173 |
st.sidebar.write("- Has single embedding (old format)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
else:
|
| 175 |
st.sidebar.write("Database is empty")
|
|
|
|
| 36 |
serializable_db[name]['embeddings'] = [emb.tolist() if isinstance(emb, np.ndarray) else emb for emb in info['embeddings']]
|
| 37 |
serializable_db[name]['models'] = info['models']
|
| 38 |
serializable_db[name]['count'] = info['count']
|
| 39 |
+
|
| 40 |
+
# Guardar imagen facial si existe
|
| 41 |
+
if 'face_image' in info:
|
| 42 |
+
serializable_db[name]['face_image'] = info['face_image'].tolist() if isinstance(info['face_image'], np.ndarray) else info['face_image']
|
| 43 |
elif 'embedding' in info:
|
| 44 |
# Formato antiguo
|
| 45 |
serializable_db[name]['embedding'] = info['embedding'].tolist() if isinstance(info['embedding'], np.ndarray) else info['embedding']
|
| 46 |
serializable_db[name]['count'] = info.get('count', 1)
|
| 47 |
+
|
| 48 |
+
# Guardar imagen facial si existe
|
| 49 |
+
if 'face_image' in info:
|
| 50 |
+
serializable_db[name]['face_image'] = info['face_image'].tolist() if isinstance(info['face_image'], np.ndarray) else info['face_image']
|
| 51 |
|
| 52 |
# Guardar en un archivo pickle
|
| 53 |
with open(DATABASE_FILE, 'wb') as f:
|
|
|
|
| 79 |
for name, info in database.items():
|
| 80 |
if 'embeddings' in info:
|
| 81 |
database[name]['embeddings'] = [np.array(emb) if isinstance(emb, list) else emb for emb in info['embeddings']]
|
| 82 |
+
# Cargar imagen facial si existe
|
| 83 |
+
if 'face_image' in info:
|
| 84 |
+
database[name]['face_image'] = np.array(info['face_image']) if isinstance(info['face_image'], list) else info['face_image']
|
| 85 |
elif 'embedding' in info:
|
| 86 |
database[name]['embedding'] = np.array(info['embedding']) if isinstance(info['embedding'], list) else info['embedding']
|
| 87 |
+
# Cargar imagen facial si existe
|
| 88 |
+
if 'face_image' in info:
|
| 89 |
+
database[name]['face_image'] = np.array(info['face_image']) if isinstance(info['face_image'], list) else info['face_image']
|
| 90 |
|
| 91 |
return database
|
| 92 |
except Exception as e:
|
|
|
|
| 113 |
]
|
| 114 |
serializable_db[name]['models'] = info['models']
|
| 115 |
serializable_db[name]['count'] = info['count']
|
| 116 |
+
|
| 117 |
+
# Incluir imagen facial si existe
|
| 118 |
+
if 'face_image' in info:
|
| 119 |
+
serializable_db[name]['face_image'] = base64.b64encode(
|
| 120 |
+
np.array(info['face_image']).tobytes()
|
| 121 |
+
).decode('utf-8')
|
| 122 |
+
serializable_db[name]['face_image_shape'] = info['face_image'].shape
|
| 123 |
elif 'embedding' in info:
|
| 124 |
serializable_db[name]['embedding'] = base64.b64encode(
|
| 125 |
np.array(info['embedding']).tobytes()
|
| 126 |
).decode('utf-8')
|
| 127 |
serializable_db[name]['count'] = info.get('count', 1)
|
| 128 |
+
|
| 129 |
+
# Incluir imagen facial si existe
|
| 130 |
+
if 'face_image' in info:
|
| 131 |
+
serializable_db[name]['face_image'] = base64.b64encode(
|
| 132 |
+
np.array(info['face_image']).tobytes()
|
| 133 |
+
).decode('utf-8')
|
| 134 |
+
serializable_db[name]['face_image_shape'] = info['face_image'].shape
|
| 135 |
|
| 136 |
# Guardar en un archivo JSON
|
| 137 |
export_file = "face_database_export.json"
|
|
|
|
| 165 |
np.frombuffer(base64.b64decode(emb), dtype=np.float32)
|
| 166 |
for emb in info['embeddings']
|
| 167 |
]
|
| 168 |
+
|
| 169 |
+
# Importar imagen facial si existe
|
| 170 |
+
if 'face_image' in info and 'face_image_shape' in info:
|
| 171 |
+
face_data = np.frombuffer(base64.b64decode(info['face_image']), dtype=np.uint8)
|
| 172 |
+
shape = info['face_image_shape']
|
| 173 |
+
imported_db[name]['face_image'] = face_data.reshape(shape)
|
| 174 |
elif 'embedding' in info:
|
| 175 |
imported_db[name]['embedding'] = np.frombuffer(
|
| 176 |
base64.b64decode(info['embedding']), dtype=np.float32
|
| 177 |
)
|
| 178 |
+
|
| 179 |
+
# Importar imagen facial si existe
|
| 180 |
+
if 'face_image' in info and 'face_image_shape' in info:
|
| 181 |
+
face_data = np.frombuffer(base64.b64decode(info['face_image']), dtype=np.uint8)
|
| 182 |
+
shape = info['face_image_shape']
|
| 183 |
+
imported_db[name]['face_image'] = face_data.reshape(shape)
|
| 184 |
|
| 185 |
return imported_db
|
| 186 |
except Exception as e:
|
|
|
|
| 209 |
st.sidebar.write(f"- Has {len(first_entry['embeddings'])} embeddings")
|
| 210 |
st.sidebar.write(f"- Models: {', '.join(first_entry['models'])}")
|
| 211 |
st.sidebar.write(f"- Count: {first_entry['count']}")
|
| 212 |
+
|
| 213 |
+
# Mostrar si tiene imagen
|
| 214 |
+
if 'face_image' in first_entry:
|
| 215 |
+
st.sidebar.write(f"- Has reference face image: {first_entry['face_image'].shape}")
|
| 216 |
+
else:
|
| 217 |
+
st.sidebar.write("- No reference image")
|
| 218 |
elif 'embedding' in first_entry:
|
| 219 |
st.sidebar.write("- Has single embedding (old format)")
|
| 220 |
+
|
| 221 |
+
# Mostrar si tiene imagen
|
| 222 |
+
if 'face_image' in first_entry:
|
| 223 |
+
st.sidebar.write(f"- Has reference face image: {first_entry['face_image'].shape}")
|
| 224 |
+
else:
|
| 225 |
+
st.sidebar.write("- No reference image")
|
| 226 |
else:
|
| 227 |
st.sidebar.write("Database is empty")
|