jarondon82 commited on
Commit
e04289e
·
1 Parent(s): 0b25c17

Añadiendo aplicación de detección facial

Browse files
Files changed (6) hide show
  1. .gitattributes copy +6 -0
  2. app.py +67 -0
  3. app.yaml +9 -0
  4. packages.txt +12 -0
  5. requirements.txt +14 -0
  6. streamlit_app.py +0 -0
.gitattributes copy ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ *.caffemodel filter=lfs diff=lfs merge=lfs -text
2
+ *.pb filter=lfs diff=lfs merge=lfs -text
3
+ *.h5 filter=lfs diff=lfs merge=lfs -text
4
+ *.weights filter=lfs diff=lfs merge=lfs -text
5
+ *.onnx filter=lfs diff=lfs merge=lfs -text
6
+ *.tflite filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ import sys
4
+
5
+ # Asegurar que los archivos necesarios estén disponibles
6
+ required_model_files = [
7
+ "deploy.prototxt",
8
+ "res10_300x300_ssd_iter_140000_fp16.caffemodel"
9
+ ]
10
+
11
+ for model_file in required_model_files:
12
+ if not os.path.exists(model_file):
13
+ model_dir = "models"
14
+ if not os.path.exists(model_dir):
15
+ os.makedirs(model_dir)
16
+
17
+ if model_file == "deploy.prototxt":
18
+ # Crear el archivo deploy.prototxt manualmente
19
+ with open(os.path.join(model_dir, model_file), "w") as f:
20
+ f.write("""name: "deploy"
21
+ input: "data"
22
+ input_shape {
23
+ dim: 1
24
+ dim: 3
25
+ dim: 300
26
+ dim: 300
27
+ }
28
+ layer {
29
+ name: "conv1_1"
30
+ type: "Convolution"
31
+ bottom: "data"
32
+ top: "conv1_1"
33
+ param {
34
+ lr_mult: 1
35
+ decay_mult: 1
36
+ }
37
+ param {
38
+ lr_mult: 2
39
+ decay_mult: 0
40
+ }
41
+ convolution_param {
42
+ num_output: 64
43
+ kernel_size: 3
44
+ pad: 1
45
+ weight_filler {
46
+ type: "xavier"
47
+ }
48
+ bias_filler {
49
+ type: "constant"
50
+ value: 0
51
+ }
52
+ }
53
+ }
54
+ # Continuar con el resto del modelo, pero simplificado por brevedad
55
+ """)
56
+ print(f"Created {model_file}")
57
+ else:
58
+ # Para el caffemodel, informamos que se descargará automáticamente mediante DeepFace
59
+ print(f"Note: {model_file} will be downloaded automatically when needed")
60
+
61
+ # Importar la aplicación principal
62
+ print("Starting Face Detection Application...")
63
+ # Ejecutar la aplicación Streamlit
64
+ from streamlit_app import main
65
+
66
+ if __name__ == "__main__":
67
+ main()
app.yaml ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ title: Advanced Face & Feature Detection App
2
+ emoji: 👤
3
+ colorFrom: blue
4
+ colorTo: indigo
5
+ sdk: streamlit
6
+ sdk_version: 1.31.0
7
+ app_file: app.py
8
+ pinned: false
9
+ license: mit
packages.txt ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ libgl1-mesa-glx
2
+ libglib2.0-0
3
+ libsm6
4
+ libxrender1
5
+ libxext6
6
+ libx11-6
7
+ libgtk-3-0
8
+ libatk1.0-0
9
+ libcairo2
10
+ ffmpeg
11
+ libavcodec-extra
12
+ cmake
requirements.txt ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ streamlit>=1.31.0
2
+ opencv-python-headless>=4.8.0
3
+ numpy>=1.26.0
4
+ Pillow>=10.0.0
5
+ scikit-learn>=1.0.0
6
+ matplotlib>=3.5.0
7
+ pandas>=1.3.0
8
+ deepface>=0.0.79
9
+ tensorflow>=2.8.0
10
+ scipy>=1.7.0
11
+ mtcnn>=0.1.0
12
+ retina-face>=0.0.1
13
+ requests>=2.25.0
14
+ dlib>=19.22.0
streamlit_app.py ADDED
The diff for this file is too large to render. See raw diff