Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- .env +9 -0
- medmind.py +288 -0
- requirements.txt +14 -0
.env
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
VECTARA_INDEX_API_KEY = "zwt_ni_bLu6MRQXzWKPIU__Uubvy_0Xz_FEr-2sfUg"
|
| 2 |
+
VECTARA_QUERY_API_KEY = "zwt_ni_bLu6MRQXzWKPIU__Uubvy_0Xz_FEr-2sfUg"
|
| 3 |
+
VECTARA_API_KEY = "zut_ni_bLoa0I3AeNSjxeZ-UfECnm_9Xv5d4RVBAqw"
|
| 4 |
+
VECTARA_CORPUS_ID = "2"
|
| 5 |
+
VECTARA_CUSTOMER_ID = "2653936430"
|
| 6 |
+
TOGETHER_API = "7e6c200b7b36924bc1b4a5973859a20d2efa7180e9b5c977301173a6c099136b"
|
| 7 |
+
GOOGLE_SEARCH_API_KEY = "AIzaSyD-1OMuZ0CxGAek0PaXrzHOmcDWFvZQtm8"
|
| 8 |
+
UNSTRUCTURED_API_KEY = "eBqsGxYYIfTdPRH7PEveZGVIH6ZHny"
|
| 9 |
+
PINECONE_API_KEY = "4523c180-39fd-4c48-99e8-88164df85b0a"
|
medmind.py
ADDED
|
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from llama_index.indices.managed.vectara import VectaraIndex
|
| 2 |
+
from dotenv import load_dotenv
|
| 3 |
+
import os
|
| 4 |
+
from docx import Document
|
| 5 |
+
from llama_index.llms.together import TogetherLLM
|
| 6 |
+
from llama_index.core.llms import ChatMessage, MessageRole
|
| 7 |
+
from Bio import Entrez
|
| 8 |
+
import ssl
|
| 9 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 10 |
+
import streamlit as st
|
| 11 |
+
from googleapiclient.discovery import build
|
| 12 |
+
from typing import List, Optional
|
| 13 |
+
|
| 14 |
+
load_dotenv()
|
| 15 |
+
|
| 16 |
+
os.environ["VECTARA_INDEX_API_KEY"] = os.getenv("VECTARA_INDEX_API_KEY", "zwt_ni_bLu6MRQXzWKPIU__Uubvy_0Xz_FEr-2sfUg")
|
| 17 |
+
os.environ["VECTARA_QUERY_API_KEY"] = os.getenv("VECTARA_QUERY_API_KEY", "zwt_ni_bLu6MRQXzWKPIU__Uubvy_0Xz_FEr-2sfUg")
|
| 18 |
+
os.environ["VECTARA_API_KEY"] = os.getenv("VECTARA_API_KEY", "zut_ni_bLoa0I3AeNSjxeZ-UfECnm_9Xv5d4RVBAqw")
|
| 19 |
+
os.environ["VECTARA_CORPUS_ID"] = os.getenv("VECTARA_CORPUS_ID", "2")
|
| 20 |
+
os.environ["VECTARA_CUSTOMER_ID"] = os.getenv("VECTARA_CUSTOMER_ID", "2653936430")
|
| 21 |
+
os.environ["TOGETHER_API"] = os.getenv("TOGETHER_API", "7e6c200b7b36924bc1b4a5973859a20d2efa7180e9b5c977301173a6c099136b")
|
| 22 |
+
os.environ["GOOGLE_SEARCH_API_KEY"] = os.getenv("GOOGLE_SEARCH_API_KEY", "AIzaSyBnQwS5kPZGKuWj6sH1aBx5F5bZq0Q5jJk")
|
| 23 |
+
|
| 24 |
+
# Initialize the Vectara index
|
| 25 |
+
index = VectaraIndex()
|
| 26 |
+
|
| 27 |
+
endpoint = 'https://api.together.xyz/inference'
|
| 28 |
+
|
| 29 |
+
# Load the hallucination evaluation model
|
| 30 |
+
model_name = "vectara/hallucination_evaluation_model"
|
| 31 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 32 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 33 |
+
|
| 34 |
+
def search_pubmed(query: str) -> Optional[List[str]]:
|
| 35 |
+
"""
|
| 36 |
+
Searches PubMed for a given query and returns a list of formatted results
|
| 37 |
+
(or None if no results are found).
|
| 38 |
+
"""
|
| 39 |
+
Entrez.email = "[email protected]" # Replace with your email
|
| 40 |
+
|
| 41 |
+
try:
|
| 42 |
+
ssl._create_default_https_context = ssl._create_unverified_context
|
| 43 |
+
|
| 44 |
+
handle = Entrez.esearch(db="pubmed", term=query, retmax=3)
|
| 45 |
+
record = Entrez.read(handle)
|
| 46 |
+
id_list = record["IdList"]
|
| 47 |
+
|
| 48 |
+
if not id_list:
|
| 49 |
+
return None
|
| 50 |
+
|
| 51 |
+
handle = Entrez.efetch(db="pubmed", id=id_list, retmode="xml")
|
| 52 |
+
articles = Entrez.read(handle)
|
| 53 |
+
|
| 54 |
+
results = []
|
| 55 |
+
for article in articles['PubmedArticle']:
|
| 56 |
+
try:
|
| 57 |
+
medline_citation = article['MedlineCitation']
|
| 58 |
+
article_data = medline_citation['Article']
|
| 59 |
+
title = article_data['ArticleTitle']
|
| 60 |
+
abstract = article_data.get('Abstract', {}).get('AbstractText', [""])[0]
|
| 61 |
+
|
| 62 |
+
result = f"**Title:** {title}\n**Abstract:** {abstract}\n"
|
| 63 |
+
result += f"**Link:** https://pubmed.ncbi.nlm.gov/{medline_citation['PMID']}\n\n"
|
| 64 |
+
results.append(result)
|
| 65 |
+
except KeyError as e:
|
| 66 |
+
print(f"Error parsing article: {article}, Error: {e}")
|
| 67 |
+
|
| 68 |
+
return results
|
| 69 |
+
|
| 70 |
+
except Exception as e:
|
| 71 |
+
print(f"Error accessing PubMed: {e}")
|
| 72 |
+
return None
|
| 73 |
+
|
| 74 |
+
def chat_with_pubmed(article_text, article_link):
|
| 75 |
+
"""
|
| 76 |
+
Engages in a chat-like interaction with a PubMed article using TogetherLLM.
|
| 77 |
+
"""
|
| 78 |
+
try:
|
| 79 |
+
llm = TogetherLLM(model="QWEN/QWEN1.5-14B-CHAT", api_key=os.environ['TOGETHER_API'])
|
| 80 |
+
messages = [
|
| 81 |
+
ChatMessage(role=MessageRole.SYSTEM, content="You are a helpful AI assistant summarizing and answering questions about the following medical research article: " + article_link),
|
| 82 |
+
ChatMessage(role=MessageRole.USER, content=article_text)
|
| 83 |
+
]
|
| 84 |
+
response = llm.chat(messages)
|
| 85 |
+
return str(response) if response else "I'm sorry, I couldn't generate a summary for this article."
|
| 86 |
+
except Exception as e:
|
| 87 |
+
print(f"Error in chat_with_pubmed: {e}")
|
| 88 |
+
return "An error occurred while generating a summary."
|
| 89 |
+
|
| 90 |
+
def search_web(query: str, num_results: int = 3) -> Optional[List[str]]:
|
| 91 |
+
"""
|
| 92 |
+
Searches the web using the Google Search API and returns a list of formatted results
|
| 93 |
+
(or None if no results are found).
|
| 94 |
+
"""
|
| 95 |
+
try:
|
| 96 |
+
service = build("customsearch", "v1", developerKey=os.environ["GOOGLE_SEARCH_API_KEY"])
|
| 97 |
+
|
| 98 |
+
# Execute the search request
|
| 99 |
+
res = service.cse().list(q=query, cx="877170db56f5c4629", num=num_results).execute()
|
| 100 |
+
|
| 101 |
+
if "items" not in res:
|
| 102 |
+
return None
|
| 103 |
+
|
| 104 |
+
results = []
|
| 105 |
+
for item in res["items"]:
|
| 106 |
+
title = item["title"]
|
| 107 |
+
link = item["link"]
|
| 108 |
+
snippet = item["snippet"]
|
| 109 |
+
result = f"**Title:** {title}\n**Link:** {link}\n**Snippet:** {snippet}\n\n"
|
| 110 |
+
results.append(result)
|
| 111 |
+
|
| 112 |
+
return results
|
| 113 |
+
|
| 114 |
+
except Exception as e:
|
| 115 |
+
print(f"Error performing web search: {e}")
|
| 116 |
+
return None
|
| 117 |
+
|
| 118 |
+
def medmind_chatbot(user_input, chat_history=None):
|
| 119 |
+
"""
|
| 120 |
+
Processes user input, interacts with various resources, and generates a response.
|
| 121 |
+
Handles potential errors, maintains chat history, and evaluates hallucination risk.
|
| 122 |
+
"""
|
| 123 |
+
|
| 124 |
+
if chat_history is None:
|
| 125 |
+
chat_history = []
|
| 126 |
+
|
| 127 |
+
response_parts = [] # Collect responses from different sources
|
| 128 |
+
|
| 129 |
+
try:
|
| 130 |
+
# Vectara Search
|
| 131 |
+
try:
|
| 132 |
+
query_str = user_input
|
| 133 |
+
response = index.as_query_engine().query(query_str)
|
| 134 |
+
response_parts.append(f"**MedMind Vectara Knowledge Base Response:**\n{response.response}")
|
| 135 |
+
except Exception as e:
|
| 136 |
+
print(f"Error in Vectara search: {e}")
|
| 137 |
+
response_parts.append("Vectara knowledge base is currently unavailable.")
|
| 138 |
+
|
| 139 |
+
# PubMed Search and Chat
|
| 140 |
+
pubmed_results = search_pubmed(user_input)
|
| 141 |
+
if pubmed_results:
|
| 142 |
+
response_parts.append("**PubMed Articles (Chat & Summarize):**")
|
| 143 |
+
for article_text in pubmed_results:
|
| 144 |
+
title, abstract, link = article_text.split("\n")[:3]
|
| 145 |
+
chat_summary = chat_with_pubmed(abstract, link)
|
| 146 |
+
response_parts.append(f"{title}\n{chat_summary}\n{link}\n")
|
| 147 |
+
else:
|
| 148 |
+
response_parts.append("No relevant PubMed articles found.")
|
| 149 |
+
|
| 150 |
+
# Web Search
|
| 151 |
+
web_results = search_web(user_input)
|
| 152 |
+
if web_results:
|
| 153 |
+
response_parts.append("**Web Search Results:**")
|
| 154 |
+
response_parts.extend(web_results)
|
| 155 |
+
else:
|
| 156 |
+
response_parts.append("No relevant web search results found.")
|
| 157 |
+
|
| 158 |
+
# Combine response parts into a single string
|
| 159 |
+
response_text = "\n\n".join(response_parts)
|
| 160 |
+
|
| 161 |
+
# Hallucination Evaluation
|
| 162 |
+
def vectara_hallucination_evaluation_model(text):
|
| 163 |
+
inputs = tokenizer(text, return_tensors="pt")
|
| 164 |
+
outputs = model(**inputs)
|
| 165 |
+
hallucination_probability = outputs.logits[0][0].item()
|
| 166 |
+
return hallucination_probability
|
| 167 |
+
|
| 168 |
+
hallucination_score = vectara_hallucination_evaluation_model(response_text)
|
| 169 |
+
HIGH_HALLUCINATION_THRESHOLD = 0.9
|
| 170 |
+
if hallucination_score > HIGH_HALLUCINATION_THRESHOLD:
|
| 171 |
+
response_text = "I'm still under development and learning. I cannot confidently answer this question yet."
|
| 172 |
+
|
| 173 |
+
except Exception as e:
|
| 174 |
+
print(f"Error in chatbot: {e}")
|
| 175 |
+
response_text = "An error occurred. Please try again later."
|
| 176 |
+
|
| 177 |
+
chat_history.append((user_input, response_text))
|
| 178 |
+
return response_text, chat_history
|
| 179 |
+
|
| 180 |
+
def show_info_popup():
|
| 181 |
+
with st.expander("How to use MedMind"):
|
| 182 |
+
st.write("""
|
| 183 |
+
**MedMind is an AI-powered chatbot designed to assist with medical information.**
|
| 184 |
+
|
| 185 |
+
**Capabilities:**
|
| 186 |
+
|
| 187 |
+
* **Answers general medical questions:** MedMind utilizes a curated medical knowledge base to provide answers to a wide range of health-related inquiries.
|
| 188 |
+
* **Summarizes relevant research articles from PubMed:** The chatbot can retrieve and summarize research articles from the PubMed database, making complex scientific information more accessible.
|
| 189 |
+
* **Provides insights from a curated medical knowledge base:** Beyond simple answers, MedMind offers additional insights and context from its knowledge base to enhance understanding.
|
| 190 |
+
* **Perform safe web searches related to your query:** The chatbot can perform web searches using the Google Search API, ensuring the safety and relevance of the results.
|
| 191 |
+
|
| 192 |
+
**Limitations:**
|
| 193 |
+
|
| 194 |
+
* **Not a substitute for professional medical advice:** MedMind is not intended to replace professional medical diagnosis and treatment. Always consult a qualified healthcare provider for personalized medical advice.
|
| 195 |
+
* **General knowledge and educational purposes:** The information provided by MedMind is for general knowledge and educational purposes only and may not be exhaustive or specific to individual situations.
|
| 196 |
+
* **Under development:** MedMind is still under development and may occasionally provide inaccurate or incomplete information. It's important to critically evaluate responses and cross-reference with reliable sources.
|
| 197 |
+
* **Hallucination potential:** While MedMind employs a hallucination evaluation model to minimize the risk of generating fabricated information, there remains a possibility of encountering inaccurate responses, especially for complex or niche queries.
|
| 198 |
+
|
| 199 |
+
**How to use:**
|
| 200 |
+
|
| 201 |
+
1. **Type your medical question in the text box.**
|
| 202 |
+
2. **MedMind will provide a comprehensive response combining information from various sources.** This may include insights from its knowledge base, summaries of relevant research articles, and safe web search results.
|
| 203 |
+
3. **You can continue the conversation by asking follow-up questions or providing additional context.** This helps MedMind refine its search and offer more tailored information.
|
| 204 |
+
4. **in case the Medmind doesn't show the output please check your internet connection or rerun the same command**
|
| 205 |
+
5. **user can either chat with the documents or with generate resposne from vectara + pubmed + web search**
|
| 206 |
+
5. **chat with document feature is still under development so it would be better to avoid using it for now**
|
| 207 |
+
""")
|
| 208 |
+
|
| 209 |
+
# Initialize session state
|
| 210 |
+
if 'chat_history' not in st.session_state:
|
| 211 |
+
st.session_state.chat_history = []
|
| 212 |
+
|
| 213 |
+
# Define function to display chat history with highlighted user input and chatbot response
|
| 214 |
+
def display_chat_history():
|
| 215 |
+
for user_msg, bot_msg in st.session_state.chat_history:
|
| 216 |
+
st.info(f"**You:** {user_msg}")
|
| 217 |
+
st.success(f"**MedMind:** {bot_msg}")
|
| 218 |
+
|
| 219 |
+
# Define function to clear chat history
|
| 220 |
+
def clear_chat():
|
| 221 |
+
st.session_state.chat_history = []
|
| 222 |
+
|
| 223 |
+
def main():
|
| 224 |
+
# Streamlit Page Configuration
|
| 225 |
+
st.set_page_config(page_title="MedMind Chatbot", layout="wide")
|
| 226 |
+
|
| 227 |
+
# Custom Styles
|
| 228 |
+
st.markdown(
|
| 229 |
+
"""
|
| 230 |
+
<style>
|
| 231 |
+
.css-18e3th9 {
|
| 232 |
+
padding-top: 2rem;
|
| 233 |
+
padding-right: 1rem;
|
| 234 |
+
padding-bottom: 2rem;
|
| 235 |
+
padding-left: 1rem;
|
| 236 |
+
}
|
| 237 |
+
.stButton>button {
|
| 238 |
+
background-color: #4CAF50;
|
| 239 |
+
color: white;
|
| 240 |
+
}
|
| 241 |
+
body {
|
| 242 |
+
background-color: #F0FDF4;
|
| 243 |
+
color: #333333;
|
| 244 |
+
}
|
| 245 |
+
.stMarkdown h1, .stMarkdown h2, .stMarkdown h3, .stMarkdown h4, .stMarkdown h5, .stMarkdown h6 {
|
| 246 |
+
color: #388E3C;
|
| 247 |
+
}
|
| 248 |
+
</style>
|
| 249 |
+
""",
|
| 250 |
+
unsafe_allow_html=True,
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
# Title and Introduction
|
| 254 |
+
st.title("MedMind Chatbot")
|
| 255 |
+
st.write("Ask your medical questions and get reliable information!")
|
| 256 |
+
|
| 257 |
+
# Example Questions (Sidebar)
|
| 258 |
+
example_questions = [
|
| 259 |
+
"What are the symptoms of COVID-19?",
|
| 260 |
+
"How can I manage my diabetes?",
|
| 261 |
+
"What are the potential side effects of ibuprofen?",
|
| 262 |
+
"What lifestyle changes can help prevent heart disease?"
|
| 263 |
+
]
|
| 264 |
+
st.sidebar.header("Example Questions")
|
| 265 |
+
for question in example_questions:
|
| 266 |
+
st.sidebar.write(question)
|
| 267 |
+
|
| 268 |
+
# Output Container
|
| 269 |
+
output_container = st.container()
|
| 270 |
+
|
| 271 |
+
# User Input and Chat History
|
| 272 |
+
input_container = st.container()
|
| 273 |
+
with input_container:
|
| 274 |
+
user_input = st.text_input("You: ", key="input_placeholder", placeholder="Type your medical question here...")
|
| 275 |
+
new_chat_button = st.button("Start New Chat")
|
| 276 |
+
if new_chat_button:
|
| 277 |
+
st.session_state.chat_history = [] # Clear chat history
|
| 278 |
+
|
| 279 |
+
if user_input:
|
| 280 |
+
response, st.session_state.chat_history = medmind_chatbot(user_input, st.session_state.chat_history)
|
| 281 |
+
with output_container:
|
| 282 |
+
display_chat_history()
|
| 283 |
+
|
| 284 |
+
# Information Popup
|
| 285 |
+
show_info_popup()
|
| 286 |
+
|
| 287 |
+
if __name__ == "__main__":
|
| 288 |
+
main()
|
requirements.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
llama-index
|
| 2 |
+
python-dotenv
|
| 3 |
+
PyPDF2
|
| 4 |
+
python-docx
|
| 5 |
+
sentence-transformers
|
| 6 |
+
biopython
|
| 7 |
+
langchain
|
| 8 |
+
transformers
|
| 9 |
+
streamlit
|
| 10 |
+
google-api-python-client
|
| 11 |
+
langchain-community
|
| 12 |
+
llama-index-embeddings-huggingface
|
| 13 |
+
llama-index-llms-together
|
| 14 |
+
llama-index-indices-managed-vectara
|