fix paths
Browse files- .gitignore +1 -2
- tortoise/models/arch_util.py +1 -1
- tortoise/read.py +1 -1
- tortoise/utils/audio.py +2 -2
- tortoise/utils/tokenizer.py +1 -1
.gitignore
CHANGED
|
@@ -129,7 +129,6 @@ dmypy.json
|
|
| 129 |
.pyre/
|
| 130 |
|
| 131 |
.idea/*
|
| 132 |
-
|
| 133 |
-
tortoise/random_voices/*
|
| 134 |
.custom/*
|
| 135 |
results/*
|
|
|
|
| 129 |
.pyre/
|
| 130 |
|
| 131 |
.idea/*
|
| 132 |
+
.models/*
|
|
|
|
| 133 |
.custom/*
|
| 134 |
results/*
|
tortoise/models/arch_util.py
CHANGED
|
@@ -290,7 +290,7 @@ class AudioMiniEncoder(nn.Module):
|
|
| 290 |
|
| 291 |
class TorchMelSpectrogram(nn.Module):
|
| 292 |
def __init__(self, filter_length=1024, hop_length=256, win_length=1024, n_mel_channels=80, mel_fmin=0, mel_fmax=8000,
|
| 293 |
-
sampling_rate=22050, normalize=False, mel_norm_file='data/mel_norms.pth'):
|
| 294 |
super().__init__()
|
| 295 |
# These are the default tacotron values for the MEL spectrogram.
|
| 296 |
self.filter_length = filter_length
|
|
|
|
| 290 |
|
| 291 |
class TorchMelSpectrogram(nn.Module):
|
| 292 |
def __init__(self, filter_length=1024, hop_length=256, win_length=1024, n_mel_channels=80, mel_fmin=0, mel_fmax=8000,
|
| 293 |
+
sampling_rate=22050, normalize=False, mel_norm_file='tortoise/data/mel_norms.pth'):
|
| 294 |
super().__init__()
|
| 295 |
# These are the default tacotron values for the MEL spectrogram.
|
| 296 |
self.filter_length = filter_length
|
tortoise/read.py
CHANGED
|
@@ -28,7 +28,7 @@ def split_and_recombine_text(texts, desired_length=200, max_len=300):
|
|
| 28 |
|
| 29 |
if __name__ == '__main__':
|
| 30 |
parser = argparse.ArgumentParser()
|
| 31 |
-
parser.add_argument('--textfile', type=str, help='A file containing the text to read.', default="data/riding_hood.txt")
|
| 32 |
parser.add_argument('--voice', type=str, help='Selects the voice to use for generation. See options in voices/ directory (and add your own!) '
|
| 33 |
'Use the & character to join two voices together. Use a comma to perform inference on multiple voices.', default='pat')
|
| 34 |
parser.add_argument('--output_path', type=str, help='Where to store outputs.', default='../results/longform/')
|
|
|
|
| 28 |
|
| 29 |
if __name__ == '__main__':
|
| 30 |
parser = argparse.ArgumentParser()
|
| 31 |
+
parser.add_argument('--textfile', type=str, help='A file containing the text to read.', default="tortoise/data/riding_hood.txt")
|
| 32 |
parser.add_argument('--voice', type=str, help='Selects the voice to use for generation. See options in voices/ directory (and add your own!) '
|
| 33 |
'Use the & character to join two voices together. Use a comma to perform inference on multiple voices.', default='pat')
|
| 34 |
parser.add_argument('--output_path', type=str, help='Where to store outputs.', default='../results/longform/')
|
tortoise/utils/audio.py
CHANGED
|
@@ -82,10 +82,10 @@ def dynamic_range_decompression(x, C=1):
|
|
| 82 |
|
| 83 |
|
| 84 |
def get_voices():
|
| 85 |
-
subs = os.listdir('voices')
|
| 86 |
voices = {}
|
| 87 |
for sub in subs:
|
| 88 |
-
subj = os.path.join('voices', sub)
|
| 89 |
if os.path.isdir(subj):
|
| 90 |
voices[sub] = list(glob(f'{subj}/*.wav')) + list(glob(f'{subj}/*.mp3')) + list(glob(f'{subj}/*.pth'))
|
| 91 |
return voices
|
|
|
|
| 82 |
|
| 83 |
|
| 84 |
def get_voices():
|
| 85 |
+
subs = os.listdir('tortoise/voices')
|
| 86 |
voices = {}
|
| 87 |
for sub in subs:
|
| 88 |
+
subj = os.path.join('tortoise/voices', sub)
|
| 89 |
if os.path.isdir(subj):
|
| 90 |
voices[sub] = list(glob(f'{subj}/*.wav')) + list(glob(f'{subj}/*.mp3')) + list(glob(f'{subj}/*.pth'))
|
| 91 |
return voices
|
tortoise/utils/tokenizer.py
CHANGED
|
@@ -164,7 +164,7 @@ def lev_distance(s1, s2):
|
|
| 164 |
return distances[-1]
|
| 165 |
|
| 166 |
class VoiceBpeTokenizer:
|
| 167 |
-
def __init__(self, vocab_file='data/tokenizer.json'):
|
| 168 |
if vocab_file is not None:
|
| 169 |
self.tokenizer = Tokenizer.from_file(vocab_file)
|
| 170 |
|
|
|
|
| 164 |
return distances[-1]
|
| 165 |
|
| 166 |
class VoiceBpeTokenizer:
|
| 167 |
+
def __init__(self, vocab_file='tortoise/data/tokenizer.json'):
|
| 168 |
if vocab_file is not None:
|
| 169 |
self.tokenizer = Tokenizer.from_file(vocab_file)
|
| 170 |
|