update
Browse files- .gitignore +1 -0
- api.py +21 -22
- do_tts.py +6 -6
- read.py +40 -32
- utils/audio.py +13 -0
.gitignore
CHANGED
|
@@ -20,6 +20,7 @@ parts/
|
|
| 20 |
sdist/
|
| 21 |
var/
|
| 22 |
wheels/
|
|
|
|
| 23 |
pip-wheel-metadata/
|
| 24 |
share/python-wheels/
|
| 25 |
*.egg-info/
|
|
|
|
| 20 |
sdist/
|
| 21 |
var/
|
| 22 |
wheels/
|
| 23 |
+
results/*
|
| 24 |
pip-wheel-metadata/
|
| 25 |
share/python-wheels/
|
| 26 |
*.egg-info/
|
api.py
CHANGED
|
@@ -150,7 +150,7 @@ def do_spectrogram_diffusion(diffusion_model, diffuser, mel_codes, conditioning_
|
|
| 150 |
|
| 151 |
|
| 152 |
class TextToSpeech:
|
| 153 |
-
def __init__(self, autoregressive_batch_size=
|
| 154 |
self.autoregressive_batch_size = autoregressive_batch_size
|
| 155 |
self.tokenizer = VoiceBpeTokenizer()
|
| 156 |
download_models()
|
|
@@ -160,14 +160,7 @@ class TextToSpeech:
|
|
| 160 |
heads=16, number_text_tokens=256, start_text_token=255, checkpointing=False,
|
| 161 |
train_solo_embeddings=False,
|
| 162 |
average_conditioning_embeddings=True).cpu().eval()
|
| 163 |
-
self.autoregressive.load_state_dict(torch.load('.models/
|
| 164 |
-
|
| 165 |
-
self.autoregressive_for_latents = UnifiedVoice(max_mel_tokens=604, max_text_tokens=402, max_conditioning_inputs=2, layers=30,
|
| 166 |
-
model_dim=1024,
|
| 167 |
-
heads=16, number_text_tokens=256, start_text_token=255, checkpointing=False,
|
| 168 |
-
train_solo_embeddings=False,
|
| 169 |
-
average_conditioning_embeddings=True).cpu().eval()
|
| 170 |
-
self.autoregressive_for_latents.load_state_dict(torch.load('.models/autoregressive_audiobooks.pth'))
|
| 171 |
|
| 172 |
self.clip = VoiceCLIP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=12,
|
| 173 |
text_seq_len=350, text_heads=8,
|
|
@@ -178,32 +171,38 @@ class TextToSpeech:
|
|
| 178 |
self.diffusion = DiffusionTts(model_channels=1024, num_layers=10, in_channels=100, out_channels=200,
|
| 179 |
in_latent_channels=1024, in_tokens=8193, dropout=0, use_fp16=False, num_heads=16,
|
| 180 |
layer_drop=0, unconditioned_percentage=0).cpu().eval()
|
| 181 |
-
self.diffusion.load_state_dict(torch.load('.models/
|
| 182 |
|
| 183 |
self.vocoder = UnivNetGenerator().cpu()
|
| 184 |
self.vocoder.load_state_dict(torch.load('.models/vocoder.pth')['model_g'])
|
| 185 |
self.vocoder.eval(inference=True)
|
| 186 |
|
| 187 |
-
def tts_with_preset(self, text, voice_samples, preset='
|
| 188 |
"""
|
| 189 |
Calls TTS with one of a set of preset generation parameters. Options:
|
| 190 |
-
'
|
| 191 |
-
'
|
| 192 |
-
'
|
|
|
|
| 193 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
presets = {
|
| 195 |
-
'
|
| 196 |
-
'
|
| 197 |
-
'
|
|
|
|
| 198 |
}
|
| 199 |
kwargs.update(presets[preset])
|
| 200 |
return self.tts(text, voice_samples, **kwargs)
|
| 201 |
|
| 202 |
def tts(self, text, voice_samples, k=1,
|
| 203 |
# autoregressive generation parameters follow
|
| 204 |
-
num_autoregressive_samples=512, temperature=.
|
| 205 |
# diffusion generation parameters follow
|
| 206 |
-
diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature
|
| 207 |
text = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).cuda()
|
| 208 |
text = F.pad(text, (0, 1)) # This may not be necessary.
|
| 209 |
|
|
@@ -250,11 +249,11 @@ class TextToSpeech:
|
|
| 250 |
# The diffusion model actually wants the last hidden layer from the autoregressive model as conditioning
|
| 251 |
# inputs. Re-produce those for the top results. This could be made more efficient by storing all of these
|
| 252 |
# results, but will increase memory usage.
|
| 253 |
-
self.
|
| 254 |
-
best_latents = self.
|
| 255 |
torch.tensor([best_results.shape[-1]*self.autoregressive.mel_length_compression], device=conds.device),
|
| 256 |
return_latent=True, clip_inputs=False)
|
| 257 |
-
self.
|
| 258 |
|
| 259 |
print("Performing vocoding..")
|
| 260 |
wav_candidates = []
|
|
|
|
| 150 |
|
| 151 |
|
| 152 |
class TextToSpeech:
|
| 153 |
+
def __init__(self, autoregressive_batch_size=16):
|
| 154 |
self.autoregressive_batch_size = autoregressive_batch_size
|
| 155 |
self.tokenizer = VoiceBpeTokenizer()
|
| 156 |
download_models()
|
|
|
|
| 160 |
heads=16, number_text_tokens=256, start_text_token=255, checkpointing=False,
|
| 161 |
train_solo_embeddings=False,
|
| 162 |
average_conditioning_embeddings=True).cpu().eval()
|
| 163 |
+
self.autoregressive.load_state_dict(torch.load('.models/autoregressive.pth'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
self.clip = VoiceCLIP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=12,
|
| 166 |
text_seq_len=350, text_heads=8,
|
|
|
|
| 171 |
self.diffusion = DiffusionTts(model_channels=1024, num_layers=10, in_channels=100, out_channels=200,
|
| 172 |
in_latent_channels=1024, in_tokens=8193, dropout=0, use_fp16=False, num_heads=16,
|
| 173 |
layer_drop=0, unconditioned_percentage=0).cpu().eval()
|
| 174 |
+
self.diffusion.load_state_dict(torch.load('.models/diffusion_decoder.pth'))
|
| 175 |
|
| 176 |
self.vocoder = UnivNetGenerator().cpu()
|
| 177 |
self.vocoder.load_state_dict(torch.load('.models/vocoder.pth')['model_g'])
|
| 178 |
self.vocoder.eval(inference=True)
|
| 179 |
|
| 180 |
+
def tts_with_preset(self, text, voice_samples, preset='fast', **kwargs):
|
| 181 |
"""
|
| 182 |
Calls TTS with one of a set of preset generation parameters. Options:
|
| 183 |
+
'ultra_fast': Produces speech at a speed which belies the name of this repo. (Not really, but it's definitely fastest).
|
| 184 |
+
'fast': Decent quality speech at a decent inference rate. A good choice for mass inference.
|
| 185 |
+
'standard': Very good quality. This is generally about as good as you are going to get.
|
| 186 |
+
'high_quality': Use if you want the absolute best. This is not really worth the compute, though.
|
| 187 |
"""
|
| 188 |
+
# Use generally found best tuning knobs for generation.
|
| 189 |
+
kwargs.update({'temperature': .8, 'length_penalty': 1.0, 'repetition_penalty': 2.0, 'top_p': .8,
|
| 190 |
+
'cond_free_k': 2.0, 'diffusion_temperature': 1.0})
|
| 191 |
+
# Presets are defined here.
|
| 192 |
presets = {
|
| 193 |
+
'ultra_fast': {'num_autoregressive_samples': 32, 'diffusion_iterations': 16, 'cond_free': False},
|
| 194 |
+
'fast': {'num_autoregressive_samples': 96, 'diffusion_iterations': 32},
|
| 195 |
+
'standard': {'num_autoregressive_samples': 256, 'diffusion_iterations': 128},
|
| 196 |
+
'high_quality': {'num_autoregressive_samples': 512, 'diffusion_iterations': 2048},
|
| 197 |
}
|
| 198 |
kwargs.update(presets[preset])
|
| 199 |
return self.tts(text, voice_samples, **kwargs)
|
| 200 |
|
| 201 |
def tts(self, text, voice_samples, k=1,
|
| 202 |
# autoregressive generation parameters follow
|
| 203 |
+
num_autoregressive_samples=512, temperature=.8, length_penalty=1, repetition_penalty=2.0, top_p=.8,
|
| 204 |
# diffusion generation parameters follow
|
| 205 |
+
diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature=1.0,):
|
| 206 |
text = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).cuda()
|
| 207 |
text = F.pad(text, (0, 1)) # This may not be necessary.
|
| 208 |
|
|
|
|
| 249 |
# The diffusion model actually wants the last hidden layer from the autoregressive model as conditioning
|
| 250 |
# inputs. Re-produce those for the top results. This could be made more efficient by storing all of these
|
| 251 |
# results, but will increase memory usage.
|
| 252 |
+
self.autoregressive = self.autoregressive.cuda()
|
| 253 |
+
best_latents = self.autoregressive(conds, text, torch.tensor([text.shape[-1]], device=conds.device), best_results,
|
| 254 |
torch.tensor([best_results.shape[-1]*self.autoregressive.mel_length_compression], device=conds.device),
|
| 255 |
return_latent=True, clip_inputs=False)
|
| 256 |
+
self.autoregressive = self.autoregressive.cpu()
|
| 257 |
|
| 258 |
print("Performing vocoding..")
|
| 259 |
wav_candidates = []
|
do_tts.py
CHANGED
|
@@ -27,12 +27,12 @@ if __name__ == '__main__':
|
|
| 27 |
}
|
| 28 |
|
| 29 |
parser = argparse.ArgumentParser()
|
| 30 |
-
parser.add_argument('
|
| 31 |
-
parser.add_argument('
|
| 32 |
-
parser.add_argument('
|
| 33 |
-
parser.add_argument('
|
| 34 |
-
parser.add_argument('
|
| 35 |
-
parser.add_argument('
|
| 36 |
args = parser.parse_args()
|
| 37 |
os.makedirs(args.output_path, exist_ok=True)
|
| 38 |
|
|
|
|
| 27 |
}
|
| 28 |
|
| 29 |
parser = argparse.ArgumentParser()
|
| 30 |
+
parser.add_argument('--text', type=str, help='Text to speak.', default="I am a language model that has learned to speak.")
|
| 31 |
+
parser.add_argument('--voice', type=str, help='Use a preset conditioning voice (defined above). Overrides cond_path.', default='obama,dotrice,harris,lescault,otto,atkins,grace,kennard,mol')
|
| 32 |
+
parser.add_argument('--num_samples', type=int, help='How many total outputs the autoregressive transformer should produce.', default=128)
|
| 33 |
+
parser.add_argument('--batch_size', type=int, help='How many samples to process at once in the autoregressive model.', default=16)
|
| 34 |
+
parser.add_argument('--num_diffusion_samples', type=int, help='Number of outputs that progress to the diffusion stage.', default=16)
|
| 35 |
+
parser.add_argument('--output_path', type=str, help='Where to store outputs.', default='results/')
|
| 36 |
args = parser.parse_args()
|
| 37 |
os.makedirs(args.output_path, exist_ok=True)
|
| 38 |
|
read.py
CHANGED
|
@@ -6,7 +6,7 @@ import torch.nn.functional as F
|
|
| 6 |
import torchaudio
|
| 7 |
|
| 8 |
from api import TextToSpeech, load_conditioning
|
| 9 |
-
from utils.audio import load_audio
|
| 10 |
from utils.tokenizer import VoiceBpeTokenizer
|
| 11 |
|
| 12 |
def split_and_recombine_text(texts, desired_length=200, max_len=300):
|
|
@@ -27,41 +27,49 @@ def split_and_recombine_text(texts, desired_length=200, max_len=300):
|
|
| 27 |
return texts
|
| 28 |
|
| 29 |
if __name__ == '__main__':
|
| 30 |
-
# These are voices drawn randomly from the training set. You are free to substitute your own voices in, but testing
|
| 31 |
-
# has shown that the model does not generalize to new voices very well.
|
| 32 |
-
preselected_cond_voices = {
|
| 33 |
-
'emma_stone': ['voices/emma_stone/1.wav','voices/emma_stone/2.wav','voices/emma_stone/3.wav'],
|
| 34 |
-
'tom_hanks': ['voices/tom_hanks/1.wav','voices/tom_hanks/2.wav','voices/tom_hanks/3.wav'],
|
| 35 |
-
'patrick_stewart': ['voices/patrick_stewart/1.wav','voices/patrick_stewart/2.wav','voices/patrick_stewart/3.wav','voices/patrick_stewart/4.wav'],
|
| 36 |
-
}
|
| 37 |
-
|
| 38 |
parser = argparse.ArgumentParser()
|
| 39 |
-
parser.add_argument('
|
| 40 |
-
parser.add_argument('
|
| 41 |
-
|
| 42 |
-
parser.add_argument('
|
| 43 |
-
parser.add_argument('
|
| 44 |
-
parser.add_argument('-generation_preset', type=str, help='Preset to use for generation', default='realistic')
|
| 45 |
args = parser.parse_args()
|
| 46 |
-
os.makedirs(args.output_path, exist_ok=True)
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
conds.
|
| 61 |
-
|
| 62 |
-
torchaudio.save(os.path.join(args.output_path, f'{j}.wav'), gen.squeeze(0).cpu(), 24000)
|
| 63 |
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
|
|
|
|
| 6 |
import torchaudio
|
| 7 |
|
| 8 |
from api import TextToSpeech, load_conditioning
|
| 9 |
+
from utils.audio import load_audio, get_voices
|
| 10 |
from utils.tokenizer import VoiceBpeTokenizer
|
| 11 |
|
| 12 |
def split_and_recombine_text(texts, desired_length=200, max_len=300):
|
|
|
|
| 27 |
return texts
|
| 28 |
|
| 29 |
if __name__ == '__main__':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
parser = argparse.ArgumentParser()
|
| 31 |
+
parser.add_argument('--textfile', type=str, help='A file containing the text to read.', default="data/riding_hood.txt")
|
| 32 |
+
parser.add_argument('--voice', type=str, help='Selects the voice to use for generation. See options in voices/ directory (and add your own!) '
|
| 33 |
+
'Use the & character to join two voices together. Use a comma to perform inference on multiple voices.', default='patrick_stewart')
|
| 34 |
+
parser.add_argument('--output_path', type=str, help='Where to store outputs.', default='results/longform/')
|
| 35 |
+
parser.add_argument('--generation_preset', type=str, help='Preset to use for generation', default='standard')
|
|
|
|
| 36 |
args = parser.parse_args()
|
|
|
|
| 37 |
|
| 38 |
+
outpath = args.output_path
|
| 39 |
+
voices = get_voices()
|
| 40 |
+
selected_voices = args.voice.split(',')
|
| 41 |
+
for selected_voice in selected_voices:
|
| 42 |
+
voice_outpath = os.path.join(outpath, selected_voice)
|
| 43 |
+
os.makedirs(voice_outpath, exist_ok=True)
|
| 44 |
+
|
| 45 |
+
with open(args.textfile, 'r', encoding='utf-8') as f:
|
| 46 |
+
text = ''.join([l for l in f.readlines()])
|
| 47 |
+
texts = split_and_recombine_text(text)
|
| 48 |
+
tts = TextToSpeech()
|
| 49 |
|
| 50 |
+
if '&' in selected_voice:
|
| 51 |
+
voice_sel = selected_voice.split('&')
|
| 52 |
+
else:
|
| 53 |
+
voice_sel = [selected_voice]
|
| 54 |
+
cond_paths = []
|
| 55 |
+
for vsel in voice_sel:
|
| 56 |
+
if vsel not in voices.keys():
|
| 57 |
+
print(f'Error: voice {vsel} not available. Skipping.')
|
| 58 |
+
continue
|
| 59 |
+
cond_paths.extend(voices[vsel])
|
| 60 |
+
if not cond_paths:
|
| 61 |
+
print('Error: no valid voices specified. Try again.')
|
| 62 |
|
| 63 |
+
priors = []
|
| 64 |
+
for j, text in enumerate(texts):
|
| 65 |
+
conds = priors.copy()
|
| 66 |
+
for cond_path in cond_paths:
|
| 67 |
+
c = load_audio(cond_path, 22050)
|
| 68 |
+
conds.append(c)
|
| 69 |
+
gen = tts.tts_with_preset(text, conds, preset=args.generation_preset)
|
| 70 |
+
torchaudio.save(os.path.join(voice_outpath, f'{j}.wav'), gen.squeeze(0).cpu(), 24000)
|
|
|
|
| 71 |
|
| 72 |
+
priors.append(torchaudio.functional.resample(gen, 24000, 22050).squeeze(0))
|
| 73 |
+
while len(priors) > 2:
|
| 74 |
+
priors.pop(0)
|
| 75 |
|
utils/audio.py
CHANGED
|
@@ -1,3 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import torchaudio
|
| 3 |
import numpy as np
|
|
@@ -78,6 +81,16 @@ def dynamic_range_decompression(x, C=1):
|
|
| 78 |
return torch.exp(x) / C
|
| 79 |
|
| 80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
class TacotronSTFT(torch.nn.Module):
|
| 82 |
def __init__(self, filter_length=1024, hop_length=256, win_length=1024,
|
| 83 |
n_mel_channels=80, sampling_rate=22050, mel_fmin=0.0,
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from glob import glob
|
| 3 |
+
|
| 4 |
import torch
|
| 5 |
import torchaudio
|
| 6 |
import numpy as np
|
|
|
|
| 81 |
return torch.exp(x) / C
|
| 82 |
|
| 83 |
|
| 84 |
+
def get_voices():
|
| 85 |
+
subs = os.listdir('voices')
|
| 86 |
+
voices = {}
|
| 87 |
+
for sub in subs:
|
| 88 |
+
subj = os.path.join('voices', sub)
|
| 89 |
+
if os.path.isdir(subj):
|
| 90 |
+
voices[sub] = glob(f'{subj}/*.wav')
|
| 91 |
+
return voices
|
| 92 |
+
|
| 93 |
+
|
| 94 |
class TacotronSTFT(torch.nn.Module):
|
| 95 |
def __init__(self, filter_length=1024, hop_length=256, win_length=1024,
|
| 96 |
n_mel_channels=80, sampling_rate=22050, mel_fmin=0.0,
|