jesusvilela commited on
Commit
568ad78
·
verified ·
1 Parent(s): 12a98dc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -21
app.py CHANGED
@@ -39,7 +39,7 @@ try: import whisper; WHISPER_AVAILABLE = True
39
  except ImportError: WHISPER_AVAILABLE = False; print("WARNING: OpenAI Whisper not found, Audio Transcription tool will be disabled.")
40
 
41
  # Google GenAI SDK types
42
- from google.genai.types import HarmCategory, HarmBlockThreshold # CORRECTED IMPORT
43
  from google.ai import generativelanguage as glm # For FileState enum
44
 
45
  # LangChain
@@ -61,14 +61,14 @@ if TYPE_CHECKING:
61
  LANGGRAPH_FLAVOR_AVAILABLE = False
62
  LG_StateGraph: Optional[Type[Any]] = None
63
  LG_ToolExecutor_Class: Optional[Type[Any]] = None
64
- LG_END: Optional[Any]] = None
65
  LG_ToolInvocation: Optional[Type[Any]] = None
66
  add_messages: Optional[Any] = None
67
  MemorySaver_Class: Optional[Type[Any]] = None
68
 
69
  AGENT_INSTANCE: Optional[Union[AgentExecutor, Any]] = None
70
  TOOLS: List[BaseTool] = []
71
- LLM_INSTANCE: Optional[ChatGoogleGenerativeAI]] = None
72
  LANGGRAPH_MEMORY_SAVER: Optional[Any] = None
73
 
74
  # google-genai Client SDK
@@ -255,7 +255,6 @@ def _download_file(file_identifier: str, task_id_for_file: Optional[str] = None)
255
  name_without_ext, current_ext = os.path.splitext(effective_save_path)
256
  if not current_ext:
257
  content_type_header = r.headers.get('content-type', '')
258
- # FIX: Handle split correctly and take first part before stripping
259
  content_type_val = content_type_header.split(';')[0].strip() if content_type_header else ''
260
  if content_type_val:
261
  guessed_ext = mimetypes.guess_extension(content_type_val)
@@ -366,9 +365,7 @@ TOOL USAGE:
366
  - 'python_repl': `args` is like '{{"query": "python code string"}}'. Use print() for output.
367
  RESPONSE FORMAT:
368
  Final AIMessage should contain ONLY the answer in 'content' and NO 'tool_calls'. If using tools, 'content' can be thought process, with 'tool_calls'.
369
- Begin!
370
- Current Task Details (including Task ID and any associated files):
371
- {input}"""
372
 
373
  REACT_PROMPT_TEMPLATE_STR = """You are a highly intelligent agent for the GAIA benchmark.
374
  Goal: EXACT MATCH answer. No extra text/markdown.
@@ -396,7 +393,6 @@ def initialize_agent_and_tools(force_reinit=False):
396
  model=GEMINI_MODEL_NAME,
397
  google_api_key=GOOGLE_API_KEY,
398
  temperature=0.0,
399
- # safety_settings parameter is removed to use model's default settings.
400
  timeout=120,
401
  convert_system_message_to_human=False # Explicitly set to False
402
  )
@@ -413,29 +409,25 @@ def initialize_agent_and_tools(force_reinit=False):
413
  else: logger.warning("'direct_multimodal_gemini_tool' NOT added (client or PIL missing).")
414
  try: search_tool = DuckDuckGoSearchRun(name="web_search"); search_tool.description = "Web search. Input: query."; TOOLS.append(search_tool)
415
  except Exception as e: logger.warning(f"DuckDuckGoSearchRun init failed: {e}")
416
- try: python_repl = PythonREPLTool(name="python_repl"); python_repl.description = "Python REPL. print() for output."; TOOLS.append(python_repl)
417
  except Exception as e: logger.warning(f"PythonREPLTool init failed: {e}")
418
  logger.info(f"Final tools list for agent: {[t.name for t in TOOLS]}")
419
 
420
- if LANGGRAPH_FLAVOR_AVAILABLE and all([LG_StateGraph, LG_ToolExecutor_Class, LG_END, LLM_INSTANCE, add_messages]): # LG_ToolInvocation removed
421
  if not LANGGRAPH_MEMORY_SAVER and MemorySaver_Class: LANGGRAPH_MEMORY_SAVER = MemorySaver_Class(); logger.info("LangGraph MemorySaver initialized.")
422
  try:
423
  logger.info(f"Attempting LangGraph init (Tool Executor type: {LG_ToolExecutor_Class.__name__ if LG_ToolExecutor_Class else 'None'})")
424
  _TypedDict = getattr(__import__('typing_extensions'), 'TypedDict', dict)
425
- # FIX: Remove 'input' key from state, only use 'messages' for conversational flow
426
  class AgentState(_TypedDict):
427
  messages: Annotated[List[Any], add_messages]
428
 
429
- # System prompt template - this describes the agent's role and tools.
430
- # The {input} placeholder for the actual task will be filled by the HumanMessage.
431
- base_system_prompt_content_lg = LANGGRAPH_PROMPT_TEMPLATE_STR.split("{input}")[0].strip()
432
 
433
  def agent_node(state: AgentState):
434
  system_message_content = base_system_prompt_content_lg.format(
435
  tools="\n".join([f"- {t.name}: {t.description}" for t in TOOLS])
436
  )
437
 
438
- # FIX: Construct message list from state, don't re-add original prompt
439
  messages_for_llm = [SystemMessage(content=system_message_content)]
440
  messages_for_llm.extend(state['messages'])
441
 
@@ -451,7 +443,7 @@ def initialize_agent_and_tools(force_reinit=False):
451
  if not LG_ToolExecutor_Class: raise ValueError("LG_ToolExecutor_Class is None for LangGraph.")
452
  tool_executor_instance_lg = LG_ToolExecutor_Class(tools=TOOLS)
453
 
454
- def tool_node(state: AgentState): # Custom tool node that expects ToolInvocation if available
455
  last_msg = state['messages'][-1] if state.get('messages') and isinstance(state['messages'][-1], AIMessage) else None
456
  if not last_msg or not last_msg.tool_calls: return {"messages": []}
457
  tool_results = []
@@ -463,10 +455,10 @@ def initialize_agent_and_tools(force_reinit=False):
463
  continue
464
  try:
465
  logger.info(f"LG Tool Invoking: '{name}' with {args} (ID: {tc_id})")
466
- if LG_ToolInvocation and type(LG_ToolExecutor_Class).__name__ != 'ToolNode': # Check if ToolInvocation exists and we're not using ToolNode directly
467
  invocation = LG_ToolInvocation(tool=name, tool_input=args)
468
  output_lg = tool_executor_instance_lg.invoke(invocation) # type: ignore
469
- else: # Assume ToolNode or compatible executor can take the dict directly if LG_ToolInvocation is None
470
  output_lg = tool_executor_instance_lg.invoke(tc) # type: ignore
471
  tool_results.append(ToolMessage(content=str(output_lg), tool_call_id=tc_id, name=name))
472
  except Exception as e_tool_node_lg:
@@ -474,7 +466,6 @@ def initialize_agent_and_tools(force_reinit=False):
474
  tool_results.append(ToolMessage(content=f"Error for tool {name}: {str(e_tool_node_lg)}", tool_call_id=tc_id, name=name))
475
  return {"messages": tool_results}
476
 
477
-
478
  workflow_lg = LG_StateGraph(AgentState) # type: ignore
479
  workflow_lg.add_node("agent", agent_node)
480
  workflow_lg.add_node("tools", tool_node)
@@ -506,7 +497,6 @@ def initialize_agent_and_tools(force_reinit=False):
506
  if not AGENT_INSTANCE: raise RuntimeError("CRITICAL: Agent initialization completely failed.")
507
  logger.info(f"Agent init finished. Active agent type: {type(AGENT_INSTANCE).__name__}")
508
 
509
- # --- get_agent_response, construct_prompt_for_agent, run_and_submit_all (Unchanged) ---
510
  def get_agent_response(prompt: str, task_id: Optional[str]=None, thread_id: Optional[str]=None) -> str:
511
  global AGENT_INSTANCE, LLM_INSTANCE
512
  thread_id_to_use = thread_id or (f"gaia_task_{task_id}" if task_id else hashlib.md5(prompt.encode()).hexdigest()[:8])
@@ -524,7 +514,6 @@ def get_agent_response(prompt: str, task_id: Optional[str]=None, thread_id: Opti
524
  try:
525
  if is_langgraph_agent_get:
526
  logger.debug(f"Using LangGraph agent for thread: {thread_id_to_use}")
527
- # FIX: The input should be a list of messages for the 'add_messages' reducer.
528
  input_for_lg_get = {"messages": [HumanMessage(content=prompt)]}
529
  logger.debug(f"Invoking LangGraph with input: {input_for_lg_get}")
530
  final_state_lg_get = AGENT_INSTANCE.invoke(input_for_lg_get, {"configurable": {"thread_id": thread_id_to_use}})
 
39
  except ImportError: WHISPER_AVAILABLE = False; print("WARNING: OpenAI Whisper not found, Audio Transcription tool will be disabled.")
40
 
41
  # Google GenAI SDK types
42
+ from google.genai.types import HarmCategory, HarmBlockThreshold
43
  from google.ai import generativelanguage as glm # For FileState enum
44
 
45
  # LangChain
 
61
  LANGGRAPH_FLAVOR_AVAILABLE = False
62
  LG_StateGraph: Optional[Type[Any]] = None
63
  LG_ToolExecutor_Class: Optional[Type[Any]] = None
64
+ LG_END: Optional[Any] = None
65
  LG_ToolInvocation: Optional[Type[Any]] = None
66
  add_messages: Optional[Any] = None
67
  MemorySaver_Class: Optional[Type[Any]] = None
68
 
69
  AGENT_INSTANCE: Optional[Union[AgentExecutor, Any]] = None
70
  TOOLS: List[BaseTool] = []
71
+ LLM_INSTANCE: Optional[ChatGoogleGenerativeAI] = None
72
  LANGGRAPH_MEMORY_SAVER: Optional[Any] = None
73
 
74
  # google-genai Client SDK
 
255
  name_without_ext, current_ext = os.path.splitext(effective_save_path)
256
  if not current_ext:
257
  content_type_header = r.headers.get('content-type', '')
 
258
  content_type_val = content_type_header.split(';')[0].strip() if content_type_header else ''
259
  if content_type_val:
260
  guessed_ext = mimetypes.guess_extension(content_type_val)
 
365
  - 'python_repl': `args` is like '{{"query": "python code string"}}'. Use print() for output.
366
  RESPONSE FORMAT:
367
  Final AIMessage should contain ONLY the answer in 'content' and NO 'tool_calls'. If using tools, 'content' can be thought process, with 'tool_calls'.
368
+ Begin!"""
 
 
369
 
370
  REACT_PROMPT_TEMPLATE_STR = """You are a highly intelligent agent for the GAIA benchmark.
371
  Goal: EXACT MATCH answer. No extra text/markdown.
 
393
  model=GEMINI_MODEL_NAME,
394
  google_api_key=GOOGLE_API_KEY,
395
  temperature=0.0,
 
396
  timeout=120,
397
  convert_system_message_to_human=False # Explicitly set to False
398
  )
 
409
  else: logger.warning("'direct_multimodal_gemini_tool' NOT added (client or PIL missing).")
410
  try: search_tool = DuckDuckGoSearchRun(name="web_search"); search_tool.description = "Web search. Input: query."; TOOLS.append(search_tool)
411
  except Exception as e: logger.warning(f"DuckDuckGoSearchRun init failed: {e}")
412
+ try: python_repl = PythonREPLTool(name="python_repl"); python_repl.description = "Python REPL. print() for output. The input is a single string of code."; TOOLS.append(python_repl)
413
  except Exception as e: logger.warning(f"PythonREPLTool init failed: {e}")
414
  logger.info(f"Final tools list for agent: {[t.name for t in TOOLS]}")
415
 
416
+ if LANGGRAPH_FLAVOR_AVAILABLE and all([LG_StateGraph, LG_ToolExecutor_Class, LG_END, LLM_INSTANCE, add_messages]):
417
  if not LANGGRAPH_MEMORY_SAVER and MemorySaver_Class: LANGGRAPH_MEMORY_SAVER = MemorySaver_Class(); logger.info("LangGraph MemorySaver initialized.")
418
  try:
419
  logger.info(f"Attempting LangGraph init (Tool Executor type: {LG_ToolExecutor_Class.__name__ if LG_ToolExecutor_Class else 'None'})")
420
  _TypedDict = getattr(__import__('typing_extensions'), 'TypedDict', dict)
 
421
  class AgentState(_TypedDict):
422
  messages: Annotated[List[Any], add_messages]
423
 
424
+ base_system_prompt_content_lg = LANGGRAPH_PROMPT_TEMPLATE_STR
 
 
425
 
426
  def agent_node(state: AgentState):
427
  system_message_content = base_system_prompt_content_lg.format(
428
  tools="\n".join([f"- {t.name}: {t.description}" for t in TOOLS])
429
  )
430
 
 
431
  messages_for_llm = [SystemMessage(content=system_message_content)]
432
  messages_for_llm.extend(state['messages'])
433
 
 
443
  if not LG_ToolExecutor_Class: raise ValueError("LG_ToolExecutor_Class is None for LangGraph.")
444
  tool_executor_instance_lg = LG_ToolExecutor_Class(tools=TOOLS)
445
 
446
+ def tool_node(state: AgentState):
447
  last_msg = state['messages'][-1] if state.get('messages') and isinstance(state['messages'][-1], AIMessage) else None
448
  if not last_msg or not last_msg.tool_calls: return {"messages": []}
449
  tool_results = []
 
455
  continue
456
  try:
457
  logger.info(f"LG Tool Invoking: '{name}' with {args} (ID: {tc_id})")
458
+ if LG_ToolInvocation and type(LG_ToolExecutor_Class).__name__ != 'ToolNode':
459
  invocation = LG_ToolInvocation(tool=name, tool_input=args)
460
  output_lg = tool_executor_instance_lg.invoke(invocation) # type: ignore
461
+ else:
462
  output_lg = tool_executor_instance_lg.invoke(tc) # type: ignore
463
  tool_results.append(ToolMessage(content=str(output_lg), tool_call_id=tc_id, name=name))
464
  except Exception as e_tool_node_lg:
 
466
  tool_results.append(ToolMessage(content=f"Error for tool {name}: {str(e_tool_node_lg)}", tool_call_id=tc_id, name=name))
467
  return {"messages": tool_results}
468
 
 
469
  workflow_lg = LG_StateGraph(AgentState) # type: ignore
470
  workflow_lg.add_node("agent", agent_node)
471
  workflow_lg.add_node("tools", tool_node)
 
497
  if not AGENT_INSTANCE: raise RuntimeError("CRITICAL: Agent initialization completely failed.")
498
  logger.info(f"Agent init finished. Active agent type: {type(AGENT_INSTANCE).__name__}")
499
 
 
500
  def get_agent_response(prompt: str, task_id: Optional[str]=None, thread_id: Optional[str]=None) -> str:
501
  global AGENT_INSTANCE, LLM_INSTANCE
502
  thread_id_to_use = thread_id or (f"gaia_task_{task_id}" if task_id else hashlib.md5(prompt.encode()).hexdigest()[:8])
 
514
  try:
515
  if is_langgraph_agent_get:
516
  logger.debug(f"Using LangGraph agent for thread: {thread_id_to_use}")
 
517
  input_for_lg_get = {"messages": [HumanMessage(content=prompt)]}
518
  logger.debug(f"Invoking LangGraph with input: {input_for_lg_get}")
519
  final_state_lg_get = AGENT_INSTANCE.invoke(input_for_lg_get, {"configurable": {"thread_id": thread_id_to_use}})