Spaces:
Running
on
Zero
Running
on
Zero
| from diffusers.utils import ( | |
| convert_unet_state_dict_to_peft, | |
| get_peft_kwargs, | |
| is_peft_version, | |
| get_adapter_name, | |
| logging, | |
| ) | |
| logger = logging.get_logger(__name__) | |
| # patching inject_adapter_in_model and load_peft_state_dict with low_cpu_mem_usage=True until it's merged into diffusers | |
| def load_lora_into_transformer( | |
| cls, state_dict, network_alphas, transformer, adapter_name=None, _pipeline=None | |
| ): | |
| """ | |
| This will load the LoRA layers specified in `state_dict` into `transformer`. | |
| Parameters: | |
| state_dict (`dict`): | |
| A standard state dict containing the lora layer parameters. The keys can either be indexed directly | |
| into the unet or prefixed with an additional `unet` which can be used to distinguish between text | |
| encoder lora layers. | |
| network_alphas (`Dict[str, float]`): | |
| The value of the network alpha used for stable learning and preventing underflow. This value has the | |
| same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this | |
| link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). | |
| transformer (`SD3Transformer2DModel`): | |
| The Transformer model to load the LoRA layers into. | |
| adapter_name (`str`, *optional*): | |
| Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
| `default_{i}` where i is the total number of adapters being loaded. | |
| """ | |
| from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict | |
| keys = list(state_dict.keys()) | |
| transformer_keys = [k for k in keys if k.startswith(cls.transformer_name)] | |
| state_dict = { | |
| k.replace(f"{cls.transformer_name}.", ""): v | |
| for k, v in state_dict.items() | |
| if k in transformer_keys | |
| } | |
| if len(state_dict.keys()) > 0: | |
| # check with first key if is not in peft format | |
| first_key = next(iter(state_dict.keys())) | |
| if "lora_A" not in first_key: | |
| state_dict = convert_unet_state_dict_to_peft(state_dict) | |
| if adapter_name in getattr(transformer, "peft_config", {}): | |
| raise ValueError( | |
| f"Adapter name {adapter_name} already in use in the transformer - please select a new adapter name." | |
| ) | |
| rank = {} | |
| for key, val in state_dict.items(): | |
| if "lora_B" in key: | |
| rank[key] = val.shape[1] | |
| if network_alphas is not None and len(network_alphas) >= 1: | |
| prefix = cls.transformer_name | |
| alpha_keys = [ | |
| k | |
| for k in network_alphas.keys() | |
| if k.startswith(prefix) and k.split(".")[0] == prefix | |
| ] | |
| network_alphas = { | |
| k.replace(f"{prefix}.", ""): v | |
| for k, v in network_alphas.items() | |
| if k in alpha_keys | |
| } | |
| lora_config_kwargs = get_peft_kwargs( | |
| rank, network_alpha_dict=network_alphas, peft_state_dict=state_dict | |
| ) | |
| if "use_dora" in lora_config_kwargs: | |
| if lora_config_kwargs["use_dora"] and is_peft_version("<", "0.9.0"): | |
| raise ValueError( | |
| "You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`." | |
| ) | |
| else: | |
| lora_config_kwargs.pop("use_dora") | |
| lora_config = LoraConfig(**lora_config_kwargs) | |
| # adapter_name | |
| if adapter_name is None: | |
| adapter_name = get_adapter_name(transformer) | |
| # In case the pipeline has been already offloaded to CPU - temporarily remove the hooks | |
| # otherwise loading LoRA weights will lead to an error | |
| is_model_cpu_offload, is_sequential_cpu_offload = ( | |
| cls._optionally_disable_offloading(_pipeline) | |
| ) | |
| inject_adapter_in_model( | |
| lora_config, transformer, adapter_name=adapter_name, low_cpu_mem_usage=True | |
| ) | |
| incompatible_keys = set_peft_model_state_dict( | |
| transformer, state_dict, adapter_name, low_cpu_mem_usage=True | |
| ) | |
| if incompatible_keys is not None: | |
| # check only for unexpected keys | |
| unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None) | |
| if unexpected_keys: | |
| logger.warning( | |
| f"Loading adapter weights from state_dict led to unexpected keys not found in the model: " | |
| f" {unexpected_keys}. " | |
| ) | |
| # Offload back. | |
| if is_model_cpu_offload: | |
| _pipeline.enable_model_cpu_offload() | |
| elif is_sequential_cpu_offload: | |
| _pipeline.enable_sequential_cpu_offload() |