Spaces:
Sleeping
Sleeping
File size: 12,476 Bytes
0f61832 903af12 8cf27dc 0f61832 065eebf 423cd4c 0f61832 065eebf 423cd4c ca36f6a 065eebf 423cd4c 0f61832 065eebf 8cf27dc 0f61832 8cf27dc 0f61832 423cd4c 065eebf 423cd4c 0f61832 423cd4c 0f61832 423cd4c 0f61832 423cd4c 0f61832 423cd4c 0f61832 065eebf 0f61832 065eebf 0f61832 065eebf 0f61832 065eebf 0f61832 065eebf 423cd4c 0f61832 423cd4c 065eebf 0f61832 423cd4c 0f61832 423cd4c 0f61832 423cd4c 8cf27dc 423cd4c 065eebf 423cd4c 065eebf 423cd4c 065eebf 423cd4c 065eebf 423cd4c 065eebf 423cd4c 065eebf 423cd4c 065eebf 423cd4c 0f61832 423cd4c 065eebf 423cd4c 8cf27dc 065eebf 423cd4c 0f61832 423cd4c 8cf27dc 423cd4c 065eebf 0f61832 065eebf 0f61832 065eebf 8cf27dc 0f61832 8cf27dc 065eebf 8cf27dc 065eebf 0f61832 065eebf 0f61832 065eebf 0f61832 065eebf 0f61832 065eebf 0f61832 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import os
import gradio as gr
import requests
import pandas as pd
import re
import logging
from agent import initialize_agent # Import the agent initialization function
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# --- Helper Functions ---
from smolagents import tool as smol_tool
def tool(*args, **kwargs):
"""Decorator for registering a function as a tool (patched for docstring)."""
return smol_tool(*args, **kwargs)
def extract_final_answer_from_response(response: str) -> str:
"""
Extract the final answer from agent response following GAIA format.
The agent should return responses ending with 'FINAL ANSWER: [answer]'
"""
if not response:
return ""
# The agent wrapper should already return just the final answer
# but this is a safety check in case the format isn't perfect
if isinstance(response, str):
# Look for FINAL ANSWER pattern
final_answer_pattern = re.compile(r'FINAL\s+ANSWER\s*:\s*(.+?)(?:\n|$)', re.IGNORECASE | re.DOTALL)
match = final_answer_pattern.search(response)
if match:
answer = match.group(1).strip()
# Clean up the answer
answer = re.sub(r'\s+', ' ', answer)
answer = answer.rstrip('.')
return answer
# If no FINAL ANSWER pattern found, return the response as is
# (the agent wrapper should have already cleaned it)
return str(response).strip()
def _fetch_questions(api_url: str) -> list:
"""Fetches evaluation questions from the API."""
questions_url = f"{api_url}/questions"
logger.info(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
raise ValueError("Fetched questions list is empty or invalid format.")
logger.info(f"Fetched {len(questions_data)} questions.")
return questions_data
except requests.exceptions.RequestException as e:
raise RuntimeError(f"Error fetching questions: {e}") from e
except requests.exceptions.JSONDecodeError as e:
raise RuntimeError(f"Error decoding JSON response from questions endpoint: {e}. Response: {response.text[:500]}") from e
except Exception as e:
raise RuntimeError(f"An unexpected error occurred fetching questions: {e}") from e
def _run_agent_on_questions(agent, questions_data: list) -> tuple[list, list]:
"""Runs the agent on each question and collects answers and logs."""
results_log = []
answers_payload = []
logger.info(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
logger.warning(f"Skipping item with missing task_id or question: {item}")
continue
try:
logger.info(f"Processing task {task_id}: {question_text[:100]}...")
# The agent is now wrapped to return GAIA-compliant format
raw_response = agent(question_text)
# Extract the final answer (should already be clean from wrapper)
submitted_answer = extract_final_answer_from_response(raw_response)
# Log the full interaction for debugging
logger.info(f"Task {task_id} - Raw response: {raw_response}")
logger.info(f"Task {task_id} - Final answer: {submitted_answer}")
answers_payload.append({
"task_id": task_id,
"submitted_answer": submitted_answer
})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Raw Response": raw_response,
"Final Answer": submitted_answer
})
except Exception as e:
error_msg = f"AGENT ERROR: {e}"
logger.error(f"Error running agent on task {task_id}: {e}")
answers_payload.append({
"task_id": task_id,
"submitted_answer": error_msg
})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Raw Response": error_msg,
"Final Answer": error_msg
})
return answers_payload, results_log
def _submit_answers(api_url: str, username: str, agent_code_url: str, answers_payload: list) -> dict:
"""Submits the agent's answers to the evaluation API."""
submit_url = f"{api_url}/submit"
submission_data = {
"username": username.strip(),
"agent_code": agent_code_url,
"answers": answers_payload
}
logger.info(f"Submitting {len(answers_payload)} answers for user '{username}' to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
return response.json()
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
raise RuntimeError(f"Submission Failed: {error_detail}") from e
except requests.exceptions.Timeout:
raise RuntimeError("Submission Failed: The request timed out.") from e
except requests.exceptions.RequestException as e:
raise RuntimeError(f"Submission Failed: Network error - {e}") from e
except Exception as e:
raise RuntimeError(f"An unexpected error occurred during submission: {e}") from e
# --- Main Gradio Function ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Orchestrates the fetching of questions, running the agent, and submitting answers.
"""
username = None
if profile:
username = profile.username
logger.info(f"User logged in: {username}")
else:
logger.info("User not logged in.")
return "Please Login to Hugging Face with the button.", None
if not username:
return "Hugging Face username not found. Please ensure you are logged in.", None
space_id = os.getenv("SPACE_ID")
if not space_id:
logger.error("SPACE_ID environment variable not found. Cannot determine agent_code URL.")
return "Error: SPACE_ID not set. Cannot determine agent_code URL.", None
agent_code_url = f"https://huggingface.co/spaces/{space_id}/tree/main"
status_message = ""
results_df = pd.DataFrame()
try:
# 1. Instantiate Agent
logger.info("Initializing agent...")
agent = initialize_agent()
if agent is None:
raise RuntimeError("Agent initialization failed. Check agent.py for details.")
logger.info("Agent initialized successfully.")
# 2. Fetch Questions
questions_data = _fetch_questions(DEFAULT_API_URL)
# 3. Run Agent on Questions
answers_payload, results_log = _run_agent_on_questions(agent, questions_data)
if not answers_payload:
status_message = "Agent did not produce any answers to submit."
return status_message, pd.DataFrame(results_log)
# 4. Submit Answers
submission_result = _submit_answers(DEFAULT_API_URL, username, agent_code_url, answers_payload)
final_status = (
f"π Submission Successful!\n"
f"π€ User: {submission_result.get('username')}\n"
f"π Overall Score: {submission_result.get('score', 'N/A')}% "
f"({submission_result.get('correct_count', '?')}/{submission_result.get('total_attempted', '?')} correct)\n"
f"π¬ Message: {submission_result.get('message', 'No message received.')}\n"
f"π Agent Code: {agent_code_url}"
)
status_message = final_status
results_df = pd.DataFrame(results_log)
except RuntimeError as e:
status_message = f"β Operation Failed: {e}"
logger.error(status_message)
# If an error occurs during agent run, results_log might be partially filled
if 'results_log' in locals():
results_df = pd.DataFrame(results_log)
else:
results_df = pd.DataFrame([{"Status": "Error", "Details": str(e)}])
except Exception as e:
status_message = f"π₯ Critical Error: {e}"
logger.error(status_message)
results_df = pd.DataFrame([{"Status": "Critical Error", "Details": str(e)}])
return status_message, results_df
# --- Gradio Interface Definition ---
with gr.Blocks(title="GAIA Benchmark Agent", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π§ GAIA Benchmark Evaluation Agent
**Enhanced AI Agent for General AI Assistant (GAIA) Benchmark**
""")
gr.Markdown("""
## π Instructions:
1. **Setup**: Clone this Space and ensure your `.env` file contains:
```
TOGETHER_API_KEY=your_together_api_key
SERPAPI_API_KEY=your_serpapi_key
```
2. **Login**: Use the button below to log in with your Hugging Face account
3. **Run**: Click 'Run Evaluation & Submit' to process all GAIA questions
4. **Wait**: The process may take several minutes depending on question complexity
---
### π― GAIA Format Requirements:
- **Numbers**: No commas, no units (unless specified)
- **Strings**: No articles (a, an, the), no abbreviations
- **Lists**: Comma-separated values following above rules
### π§ Agent Capabilities:
- **Web Research**: Google Search, Wikipedia, webpage analysis
- **Video Analysis**: YouTube transcript processing
- **Mathematical Computing**: Python execution with scientific libraries
- **Multi-step Reasoning**: Complex problem decomposition
""")
with gr.Row():
gr.LoginButton(scale=1)
run_button = gr.Button("π Run Evaluation & Submit All Answers", variant="primary", scale=2)
status_output = gr.Textbox(
label="π Evaluation Status & Results",
lines=8,
interactive=False,
placeholder="Click 'Run Evaluation' to start the process..."
)
results_table = gr.DataFrame(
label="π Detailed Question Results",
wrap=True,
interactive=False,
column_widths=["10%", "40%", "25%", "25%"]
)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
gr.Markdown("""
---
### π‘ Tips for Better Performance:
- Ensure stable internet connection for web searches
- Monitor the status output for real-time progress
- Check the detailed results table for individual question analysis
- The agent automatically formats answers according to GAIA requirements
""")
if __name__ == "__main__":
print("\n" + "="*70)
print("π GAIA BENCHMARK AGENT STARTING")
print("="*70)
# Check environment variables
space_host = os.getenv("SPACE_HOST")
space_id = os.getenv("SPACE_ID")
together_key = os.getenv("TOGETHER_API_KEY")
serpapi_key = os.getenv("SERPAPI_API_KEY")
if space_host:
print(f"β
SPACE_HOST: {space_host}")
print(f" π Runtime URL: https://{space_host}.hf.space")
else:
print("βΉοΈ SPACE_HOST not found (local development)")
if space_id:
print(f"β
SPACE_ID: {space_id}")
print(f" π Repo URL: https://huggingface.co/spaces/{space_id}")
else:
print("β οΈ SPACE_ID not found - submissions may fail")
print(f"π API Keys Status:")
print(f" Together AI: {'β
Set' if together_key else 'β Missing'}")
print(f" SerpAPI: {'β
Set' if serpapi_key else 'β οΈ Missing (optional)'}")
print("="*70)
print("π― Launching GAIA Benchmark Interface...")
print("="*70 + "\n")
demo.launch(debug=True, share=False) |