jesusgj
Modified files
ca36f6a
raw
history blame
12.5 kB
import os
import gradio as gr
import requests
import pandas as pd
import re
import logging
from agent import initialize_agent # Import the agent initialization function
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# --- Helper Functions ---
from smolagents import tool as smol_tool
def tool(*args, **kwargs):
"""Decorator for registering a function as a tool (patched for docstring)."""
return smol_tool(*args, **kwargs)
def extract_final_answer_from_response(response: str) -> str:
"""
Extract the final answer from agent response following GAIA format.
The agent should return responses ending with 'FINAL ANSWER: [answer]'
"""
if not response:
return ""
# The agent wrapper should already return just the final answer
# but this is a safety check in case the format isn't perfect
if isinstance(response, str):
# Look for FINAL ANSWER pattern
final_answer_pattern = re.compile(r'FINAL\s+ANSWER\s*:\s*(.+?)(?:\n|$)', re.IGNORECASE | re.DOTALL)
match = final_answer_pattern.search(response)
if match:
answer = match.group(1).strip()
# Clean up the answer
answer = re.sub(r'\s+', ' ', answer)
answer = answer.rstrip('.')
return answer
# If no FINAL ANSWER pattern found, return the response as is
# (the agent wrapper should have already cleaned it)
return str(response).strip()
def _fetch_questions(api_url: str) -> list:
"""Fetches evaluation questions from the API."""
questions_url = f"{api_url}/questions"
logger.info(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
raise ValueError("Fetched questions list is empty or invalid format.")
logger.info(f"Fetched {len(questions_data)} questions.")
return questions_data
except requests.exceptions.RequestException as e:
raise RuntimeError(f"Error fetching questions: {e}") from e
except requests.exceptions.JSONDecodeError as e:
raise RuntimeError(f"Error decoding JSON response from questions endpoint: {e}. Response: {response.text[:500]}") from e
except Exception as e:
raise RuntimeError(f"An unexpected error occurred fetching questions: {e}") from e
def _run_agent_on_questions(agent, questions_data: list) -> tuple[list, list]:
"""Runs the agent on each question and collects answers and logs."""
results_log = []
answers_payload = []
logger.info(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
logger.warning(f"Skipping item with missing task_id or question: {item}")
continue
try:
logger.info(f"Processing task {task_id}: {question_text[:100]}...")
# The agent is now wrapped to return GAIA-compliant format
raw_response = agent(question_text)
# Extract the final answer (should already be clean from wrapper)
submitted_answer = extract_final_answer_from_response(raw_response)
# Log the full interaction for debugging
logger.info(f"Task {task_id} - Raw response: {raw_response}")
logger.info(f"Task {task_id} - Final answer: {submitted_answer}")
answers_payload.append({
"task_id": task_id,
"submitted_answer": submitted_answer
})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Raw Response": raw_response,
"Final Answer": submitted_answer
})
except Exception as e:
error_msg = f"AGENT ERROR: {e}"
logger.error(f"Error running agent on task {task_id}: {e}")
answers_payload.append({
"task_id": task_id,
"submitted_answer": error_msg
})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Raw Response": error_msg,
"Final Answer": error_msg
})
return answers_payload, results_log
def _submit_answers(api_url: str, username: str, agent_code_url: str, answers_payload: list) -> dict:
"""Submits the agent's answers to the evaluation API."""
submit_url = f"{api_url}/submit"
submission_data = {
"username": username.strip(),
"agent_code": agent_code_url,
"answers": answers_payload
}
logger.info(f"Submitting {len(answers_payload)} answers for user '{username}' to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
return response.json()
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
raise RuntimeError(f"Submission Failed: {error_detail}") from e
except requests.exceptions.Timeout:
raise RuntimeError("Submission Failed: The request timed out.") from e
except requests.exceptions.RequestException as e:
raise RuntimeError(f"Submission Failed: Network error - {e}") from e
except Exception as e:
raise RuntimeError(f"An unexpected error occurred during submission: {e}") from e
# --- Main Gradio Function ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Orchestrates the fetching of questions, running the agent, and submitting answers.
"""
username = None
if profile:
username = profile.username
logger.info(f"User logged in: {username}")
else:
logger.info("User not logged in.")
return "Please Login to Hugging Face with the button.", None
if not username:
return "Hugging Face username not found. Please ensure you are logged in.", None
space_id = os.getenv("SPACE_ID")
if not space_id:
logger.error("SPACE_ID environment variable not found. Cannot determine agent_code URL.")
return "Error: SPACE_ID not set. Cannot determine agent_code URL.", None
agent_code_url = f"https://huggingface.co/spaces/{space_id}/tree/main"
status_message = ""
results_df = pd.DataFrame()
try:
# 1. Instantiate Agent
logger.info("Initializing agent...")
agent = initialize_agent()
if agent is None:
raise RuntimeError("Agent initialization failed. Check agent.py for details.")
logger.info("Agent initialized successfully.")
# 2. Fetch Questions
questions_data = _fetch_questions(DEFAULT_API_URL)
# 3. Run Agent on Questions
answers_payload, results_log = _run_agent_on_questions(agent, questions_data)
if not answers_payload:
status_message = "Agent did not produce any answers to submit."
return status_message, pd.DataFrame(results_log)
# 4. Submit Answers
submission_result = _submit_answers(DEFAULT_API_URL, username, agent_code_url, answers_payload)
final_status = (
f"πŸŽ‰ Submission Successful!\n"
f"πŸ‘€ User: {submission_result.get('username')}\n"
f"πŸ“Š Overall Score: {submission_result.get('score', 'N/A')}% "
f"({submission_result.get('correct_count', '?')}/{submission_result.get('total_attempted', '?')} correct)\n"
f"πŸ’¬ Message: {submission_result.get('message', 'No message received.')}\n"
f"πŸ”— Agent Code: {agent_code_url}"
)
status_message = final_status
results_df = pd.DataFrame(results_log)
except RuntimeError as e:
status_message = f"❌ Operation Failed: {e}"
logger.error(status_message)
# If an error occurs during agent run, results_log might be partially filled
if 'results_log' in locals():
results_df = pd.DataFrame(results_log)
else:
results_df = pd.DataFrame([{"Status": "Error", "Details": str(e)}])
except Exception as e:
status_message = f"πŸ’₯ Critical Error: {e}"
logger.error(status_message)
results_df = pd.DataFrame([{"Status": "Critical Error", "Details": str(e)}])
return status_message, results_df
# --- Gradio Interface Definition ---
with gr.Blocks(title="GAIA Benchmark Agent", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 🧠 GAIA Benchmark Evaluation Agent
**Enhanced AI Agent for General AI Assistant (GAIA) Benchmark**
""")
gr.Markdown("""
## πŸ“‹ Instructions:
1. **Setup**: Clone this Space and ensure your `.env` file contains:
```
TOGETHER_API_KEY=your_together_api_key
SERPAPI_API_KEY=your_serpapi_key
```
2. **Login**: Use the button below to log in with your Hugging Face account
3. **Run**: Click 'Run Evaluation & Submit' to process all GAIA questions
4. **Wait**: The process may take several minutes depending on question complexity
---
### 🎯 GAIA Format Requirements:
- **Numbers**: No commas, no units (unless specified)
- **Strings**: No articles (a, an, the), no abbreviations
- **Lists**: Comma-separated values following above rules
### πŸ”§ Agent Capabilities:
- **Web Research**: Google Search, Wikipedia, webpage analysis
- **Video Analysis**: YouTube transcript processing
- **Mathematical Computing**: Python execution with scientific libraries
- **Multi-step Reasoning**: Complex problem decomposition
""")
with gr.Row():
gr.LoginButton(scale=1)
run_button = gr.Button("πŸš€ Run Evaluation & Submit All Answers", variant="primary", scale=2)
status_output = gr.Textbox(
label="πŸ“Š Evaluation Status & Results",
lines=8,
interactive=False,
placeholder="Click 'Run Evaluation' to start the process..."
)
results_table = gr.DataFrame(
label="πŸ“ Detailed Question Results",
wrap=True,
interactive=False,
column_widths=["10%", "40%", "25%", "25%"]
)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
gr.Markdown("""
---
### πŸ’‘ Tips for Better Performance:
- Ensure stable internet connection for web searches
- Monitor the status output for real-time progress
- Check the detailed results table for individual question analysis
- The agent automatically formats answers according to GAIA requirements
""")
if __name__ == "__main__":
print("\n" + "="*70)
print("πŸš€ GAIA BENCHMARK AGENT STARTING")
print("="*70)
# Check environment variables
space_host = os.getenv("SPACE_HOST")
space_id = os.getenv("SPACE_ID")
together_key = os.getenv("TOGETHER_API_KEY")
serpapi_key = os.getenv("SERPAPI_API_KEY")
if space_host:
print(f"βœ… SPACE_HOST: {space_host}")
print(f" 🌐 Runtime URL: https://{space_host}.hf.space")
else:
print("ℹ️ SPACE_HOST not found (local development)")
if space_id:
print(f"βœ… SPACE_ID: {space_id}")
print(f" πŸ“‚ Repo URL: https://huggingface.co/spaces/{space_id}")
else:
print("⚠️ SPACE_ID not found - submissions may fail")
print(f"πŸ”‘ API Keys Status:")
print(f" Together AI: {'βœ… Set' if together_key else '❌ Missing'}")
print(f" SerpAPI: {'βœ… Set' if serpapi_key else '⚠️ Missing (optional)'}")
print("="*70)
print("🎯 Launching GAIA Benchmark Interface...")
print("="*70 + "\n")
demo.launch(debug=True, share=False)