Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,53 +1,22 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import torch
|
| 3 |
from transformers import pipeline
|
|
|
|
| 4 |
|
| 5 |
model_id = "ntu-spml/distilhubert"
|
| 6 |
-
device =
|
| 7 |
pipe = pipeline("audio-classification", model=model_id, device=device)
|
| 8 |
|
| 9 |
-
# def predict_trunc(filepath):
|
| 10 |
-
# preprocessed = pipe.preprocess(filepath)
|
| 11 |
-
# truncated = pipe.feature_extractor.pad(preprocessed,truncation=True, max_length = 16_000*30)
|
| 12 |
-
# model_outputs = pipe.forward(truncated)
|
| 13 |
-
# outputs = pipe.postprocess(model_outputs)
|
| 14 |
-
|
| 15 |
-
# return outputs
|
| 16 |
-
|
| 17 |
-
|
| 18 |
def classify_audio(filepath):
|
| 19 |
import time
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
# Assuming `pipe` is your model pipeline for inference
|
| 23 |
preds = pipe(filepath)
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
for p in preds:
|
| 27 |
-
outputs[p["label"]] = p["score"]
|
| 28 |
-
|
| 29 |
-
end_time = time.time()
|
| 30 |
-
prediction_time = end_time - start_time
|
| 31 |
-
|
| 32 |
-
return outputs, prediction_time
|
| 33 |
-
|
| 34 |
|
| 35 |
-
|
| 36 |
-
description = """
|
| 37 |
-
Music Genre Classifier model (Fine-tuned "ntu-spml/distilhubert") Dataset: [GTZAN](https://huggingface.co/datasets/marsyas/gtzan)
|
| 38 |
-
"""
|
| 39 |
-
|
| 40 |
-
filenames = ['rock-it-21275.mp3']
|
| 41 |
-
filenames = [f"./{f}" for f in filenames]
|
| 42 |
-
|
| 43 |
-
demo = gr.Interface(
|
| 44 |
fn=classify_audio,
|
| 45 |
-
inputs=gr.Audio(type="filepath"),
|
| 46 |
-
outputs=[gr.Label(), gr.Number(label="
|
| 47 |
-
title=
|
| 48 |
-
description=
|
| 49 |
-
)
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
from transformers import pipeline
|
| 3 |
+
import torch
|
| 4 |
|
| 5 |
model_id = "ntu-spml/distilhubert"
|
| 6 |
+
device = 0 if torch.cuda.is_available() else -1
|
| 7 |
pipe = pipeline("audio-classification", model=model_id, device=device)
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
def classify_audio(filepath):
|
| 10 |
import time
|
| 11 |
+
start = time.time()
|
|
|
|
|
|
|
| 12 |
preds = pipe(filepath)
|
| 13 |
+
result = {p["label"]: round(p["score"], 3) for p in preds}
|
| 14 |
+
return result, round(time.time() - start, 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
gr.Interface(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
fn=classify_audio,
|
| 18 |
+
inputs=gr.Audio(type="filepath", label="Upload Audio"),
|
| 19 |
+
outputs=[gr.Label(label="Top Genres"), gr.Number(label="Time (s)")],
|
| 20 |
+
title="🎵 Music Genre Classifier",
|
| 21 |
+
description="Classifies the genre of uploaded audio using DistilHuBERT fine-tuned on GTZAN."
|
| 22 |
+
).launch()
|
|
|
|
|
|
|
|
|
|
|
|