Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -70,25 +70,25 @@ def classify_image(inp):
|
|
| 70 |
|
| 71 |
prediction = model(img_t.unsqueeze(0)).softmax(-1).flatten()
|
| 72 |
|
| 73 |
-
modulator = model.layers[0].blocks[
|
| 74 |
modulator = nn.Upsample(size=img_t.shape[1:], mode='bilinear')(modulator)
|
| 75 |
modulator = modulator.squeeze(1).detach().permute(1, 2, 0).numpy()
|
| 76 |
modulator = (modulator - modulator.min()) / (modulator.max() - modulator.min())
|
| 77 |
cam0 = show_cam_on_image(img_d, modulator, use_rgb=True)
|
| 78 |
|
| 79 |
-
modulator = model.layers[0].blocks[
|
| 80 |
modulator = nn.Upsample(size=img_t.shape[1:], mode='bilinear')(modulator)
|
| 81 |
modulator = modulator.squeeze(1).detach().permute(1, 2, 0).numpy()
|
| 82 |
modulator = (modulator - modulator.min()) / (modulator.max() - modulator.min())
|
| 83 |
cam1 = show_cam_on_image(img_d, modulator, use_rgb=True)
|
| 84 |
|
| 85 |
-
modulator = model.layers[0].blocks[
|
| 86 |
modulator = nn.Upsample(size=img_t.shape[1:], mode='bilinear')(modulator)
|
| 87 |
modulator = modulator.squeeze(1).detach().permute(1, 2, 0).numpy()
|
| 88 |
modulator = (modulator - modulator.min()) / (modulator.max() - modulator.min())
|
| 89 |
cam2 = show_cam_on_image(img_d, modulator, use_rgb=True)
|
| 90 |
|
| 91 |
-
modulator = model.layers[0].blocks[
|
| 92 |
modulator = nn.Upsample(size=img_t.shape[1:], mode='bilinear')(modulator)
|
| 93 |
modulator = modulator.squeeze(1).detach().permute(1, 2, 0).numpy()
|
| 94 |
modulator = (modulator - modulator.min()) / (modulator.max() - modulator.min())
|
|
@@ -107,16 +107,16 @@ gr.Interface(
|
|
| 107 |
outputs=[
|
| 108 |
gr.outputs.Image(
|
| 109 |
type="pil",
|
| 110 |
-
label="Modulator at layer
|
| 111 |
gr.outputs.Image(
|
| 112 |
type="pil",
|
| 113 |
-
label="Modulator at layer
|
| 114 |
gr.outputs.Image(
|
| 115 |
type="pil",
|
| 116 |
-
label="Modulator at layer
|
| 117 |
gr.outputs.Image(
|
| 118 |
type="pil",
|
| 119 |
-
label="Modulator at layer
|
| 120 |
label,
|
| 121 |
],
|
| 122 |
examples=[["./donut.png"], ["./horses.png"], ["./pencil.png"]],
|
|
|
|
| 70 |
|
| 71 |
prediction = model(img_t.unsqueeze(0)).softmax(-1).flatten()
|
| 72 |
|
| 73 |
+
modulator = model.layers[0].blocks[11].modulation.modulator.norm(2, 1, keepdim=True)
|
| 74 |
modulator = nn.Upsample(size=img_t.shape[1:], mode='bilinear')(modulator)
|
| 75 |
modulator = modulator.squeeze(1).detach().permute(1, 2, 0).numpy()
|
| 76 |
modulator = (modulator - modulator.min()) / (modulator.max() - modulator.min())
|
| 77 |
cam0 = show_cam_on_image(img_d, modulator, use_rgb=True)
|
| 78 |
|
| 79 |
+
modulator = model.layers[0].blocks[8].modulation.modulator.norm(2, 1, keepdim=True)
|
| 80 |
modulator = nn.Upsample(size=img_t.shape[1:], mode='bilinear')(modulator)
|
| 81 |
modulator = modulator.squeeze(1).detach().permute(1, 2, 0).numpy()
|
| 82 |
modulator = (modulator - modulator.min()) / (modulator.max() - modulator.min())
|
| 83 |
cam1 = show_cam_on_image(img_d, modulator, use_rgb=True)
|
| 84 |
|
| 85 |
+
modulator = model.layers[0].blocks[5].modulation.modulator.norm(2, 1, keepdim=True)
|
| 86 |
modulator = nn.Upsample(size=img_t.shape[1:], mode='bilinear')(modulator)
|
| 87 |
modulator = modulator.squeeze(1).detach().permute(1, 2, 0).numpy()
|
| 88 |
modulator = (modulator - modulator.min()) / (modulator.max() - modulator.min())
|
| 89 |
cam2 = show_cam_on_image(img_d, modulator, use_rgb=True)
|
| 90 |
|
| 91 |
+
modulator = model.layers[0].blocks[2].modulation.modulator.norm(2, 1, keepdim=True)
|
| 92 |
modulator = nn.Upsample(size=img_t.shape[1:], mode='bilinear')(modulator)
|
| 93 |
modulator = modulator.squeeze(1).detach().permute(1, 2, 0).numpy()
|
| 94 |
modulator = (modulator - modulator.min()) / (modulator.max() - modulator.min())
|
|
|
|
| 107 |
outputs=[
|
| 108 |
gr.outputs.Image(
|
| 109 |
type="pil",
|
| 110 |
+
label="Modulator at layer 12"),
|
| 111 |
gr.outputs.Image(
|
| 112 |
type="pil",
|
| 113 |
+
label="Modulator at layer 9"),
|
| 114 |
gr.outputs.Image(
|
| 115 |
type="pil",
|
| 116 |
+
label="Modulator at layer 6"),
|
| 117 |
gr.outputs.Image(
|
| 118 |
type="pil",
|
| 119 |
+
label="Modulator at layer 3"),
|
| 120 |
label,
|
| 121 |
],
|
| 122 |
examples=[["./donut.png"], ["./horses.png"], ["./pencil.png"]],
|