Spaces:
Sleeping
Sleeping
Commit
·
6dabd3f
1
Parent(s):
7ec6a67
add new app.
Browse files- app.py +72 -29
- app_legacy.py → app_v0.py +0 -0
- app_v1.py +114 -0
app.py
CHANGED
|
@@ -21,11 +21,35 @@ from selenium import webdriver
|
|
| 21 |
from selenium.common.exceptions import WebDriverException
|
| 22 |
import os
|
| 23 |
|
| 24 |
-
# Load the FastText language identification model from Hugging Face Hub
|
| 25 |
-
model_path = hf_hub_download(repo_id="facebook/fasttext-language-identification", filename="model.bin")
|
| 26 |
|
| 27 |
-
#
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
def remove_label_prefix(item):
|
| 31 |
return item.replace('__label__', '')
|
|
@@ -36,20 +60,21 @@ def remove_label_prefix_list(input_list):
|
|
| 36 |
else:
|
| 37 |
return [remove_label_prefix(item) for item in input_list]
|
| 38 |
|
| 39 |
-
class_names = remove_label_prefix_list(classifier.labels)
|
| 40 |
-
class_names = np.sort(class_names)
|
| 41 |
-
num_class = len(class_names)
|
| 42 |
|
| 43 |
-
def tokenize_string(
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
-
explainer = lime.lime_text.LimeTextExplainer(
|
| 47 |
-
split_expression=tokenize_string,
|
| 48 |
-
bow=False,
|
| 49 |
-
class_names=class_names
|
| 50 |
-
)
|
| 51 |
|
| 52 |
-
def fasttext_prediction_in_sklearn_format(classifier, texts):
|
|
|
|
|
|
|
|
|
|
| 53 |
res = []
|
| 54 |
labels, probabilities = classifier.predict(texts, num_class)
|
| 55 |
labels = remove_label_prefix_list(labels)
|
|
@@ -58,11 +83,12 @@ def fasttext_prediction_in_sklearn_format(classifier, texts):
|
|
| 58 |
res.append(probs[order])
|
| 59 |
return np.array(res)
|
| 60 |
|
| 61 |
-
|
|
|
|
| 62 |
preprocessed_sentence = input_sentence
|
| 63 |
exp = explainer.explain_instance(
|
| 64 |
preprocessed_sentence,
|
| 65 |
-
classifier_fn=lambda x: fasttext_prediction_in_sklearn_format(classifier, x),
|
| 66 |
top_labels=2,
|
| 67 |
num_features=20,
|
| 68 |
)
|
|
@@ -91,24 +117,41 @@ def take_screenshot(local_html_path):
|
|
| 91 |
|
| 92 |
return Image.open(BytesIO(screenshot))
|
| 93 |
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
| 95 |
input_sentence = input_sentence.replace('\n', ' ')
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
im = take_screenshot(output_html_filename)
|
| 98 |
-
|
| 99 |
return im, output_html_filename
|
| 100 |
|
| 101 |
-
|
|
|
|
|
|
|
| 102 |
|
| 103 |
output_explanation = gr.outputs.File(label="Explanation HTML")
|
| 104 |
|
| 105 |
-
iface = gr.Interface(
|
| 106 |
-
fn=merge,
|
| 107 |
-
inputs=input_sentence,
|
| 108 |
-
outputs=[gr.Image(type="pil", height=364, width=683, label = "Explanation Image"), output_explanation],
|
| 109 |
-
title="LIME LID",
|
| 110 |
-
description="This code applies LIME (Local Interpretable Model-Agnostic Explanations) on fasttext language identification.",
|
| 111 |
-
allow_flagging='never'
|
| 112 |
-
)
|
| 113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
iface.launch()
|
|
|
|
| 21 |
from selenium.common.exceptions import WebDriverException
|
| 22 |
import os
|
| 23 |
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
# Define a dictionary to map model choices to their respective paths
|
| 26 |
+
model_paths = {
|
| 27 |
+
"LID201": ["kargaranamir/LID201", 'model.bin'],
|
| 28 |
+
"BIGLID": ["kargaranamir/BIGLID", 'model.bin'],
|
| 29 |
+
# "FT176": ["kargaranamir/FT176", 'model.bin'],
|
| 30 |
+
"NLLB": ["facebook/fasttext-language-identification", 'model.bin']
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
# Create a dictionary to cache classifiers
|
| 34 |
+
cached_classifiers = {}
|
| 35 |
+
|
| 36 |
+
def load_classifier(model_choice):
|
| 37 |
+
if model_choice in cached_classifiers:
|
| 38 |
+
return cached_classifiers[model_choice]
|
| 39 |
+
|
| 40 |
+
# Load the FastText language identification model from Hugging Face Hub
|
| 41 |
+
model_path = hf_hub_download(repo_id=model_paths[model_choice][0], filename=model_paths[model_choice][1])
|
| 42 |
+
|
| 43 |
+
# Create the FastText classifier
|
| 44 |
+
classifier = _FastText(model_path)
|
| 45 |
+
|
| 46 |
+
cached_classifiers[model_choice] = classifier
|
| 47 |
+
return classifier
|
| 48 |
+
|
| 49 |
+
# cache all models
|
| 50 |
+
for model_choice in model_paths.keys():
|
| 51 |
+
load_classifier(model_choice)
|
| 52 |
+
|
| 53 |
|
| 54 |
def remove_label_prefix(item):
|
| 55 |
return item.replace('__label__', '')
|
|
|
|
| 60 |
else:
|
| 61 |
return [remove_label_prefix(item) for item in input_list]
|
| 62 |
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
+
def tokenize_string(sentence, n=None):
|
| 65 |
+
if n is None:
|
| 66 |
+
tokens = sentence.split()
|
| 67 |
+
else:
|
| 68 |
+
tokens = []
|
| 69 |
+
for i in range(len(sentence) - n + 1):
|
| 70 |
+
tokens.append(sentence[i:i + n])
|
| 71 |
+
return tokens
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
+
def fasttext_prediction_in_sklearn_format(classifier, texts, num_class):
|
| 75 |
+
# if isinstance(texts, str):
|
| 76 |
+
# texts = [texts]
|
| 77 |
+
|
| 78 |
res = []
|
| 79 |
labels, probabilities = classifier.predict(texts, num_class)
|
| 80 |
labels = remove_label_prefix_list(labels)
|
|
|
|
| 83 |
res.append(probs[order])
|
| 84 |
return np.array(res)
|
| 85 |
|
| 86 |
+
|
| 87 |
+
def generate_explanation_html(input_sentence, explainer, classifier, num_class):
|
| 88 |
preprocessed_sentence = input_sentence
|
| 89 |
exp = explainer.explain_instance(
|
| 90 |
preprocessed_sentence,
|
| 91 |
+
classifier_fn=lambda x: fasttext_prediction_in_sklearn_format(classifier, x, num_class),
|
| 92 |
top_labels=2,
|
| 93 |
num_features=20,
|
| 94 |
)
|
|
|
|
| 117 |
|
| 118 |
return Image.open(BytesIO(screenshot))
|
| 119 |
|
| 120 |
+
|
| 121 |
+
# Define the merge function
|
| 122 |
+
def merge_function(input_sentence, selected_model):
|
| 123 |
+
|
| 124 |
input_sentence = input_sentence.replace('\n', ' ')
|
| 125 |
+
|
| 126 |
+
# Load the FastText language identification (BIGLID) model from Hugging Face Hub
|
| 127 |
+
classifier = load_classifier(selected_model)
|
| 128 |
+
class_names = remove_label_prefix_list(classifier.labels)
|
| 129 |
+
class_names = np.sort(class_names)
|
| 130 |
+
num_class = len(class_names)
|
| 131 |
+
|
| 132 |
+
# Load Lime
|
| 133 |
+
explainer = lime.lime_text.LimeTextExplainer(
|
| 134 |
+
split_expression=tokenize_string,
|
| 135 |
+
bow=False,
|
| 136 |
+
class_names=class_names)
|
| 137 |
+
|
| 138 |
+
# Generate output
|
| 139 |
+
output_html_filename = generate_explanation_html(input_sentence, explainer, classifier, num_class)
|
| 140 |
im = take_screenshot(output_html_filename)
|
|
|
|
| 141 |
return im, output_html_filename
|
| 142 |
|
| 143 |
+
# Define the Gradio interface
|
| 144 |
+
input_text = gr.inputs.Textbox(label="Input Text")
|
| 145 |
+
model_choice = gr.Radio(choices=["BIGLID", "LID201", "NLLB"], label="Select Model", value='BIGLID')
|
| 146 |
|
| 147 |
output_explanation = gr.outputs.File(label="Explanation HTML")
|
| 148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
+
iface = gr.Interface(merge_function,
|
| 151 |
+
inputs=[input_text, model_choice],
|
| 152 |
+
outputs=[gr.Image(type="pil", height=364, width=683, label = "Explanation Image"), output_explanation],
|
| 153 |
+
title="LIME LID",
|
| 154 |
+
description="This code applies LIME (Local Interpretable Model-Agnostic Explanations) on fasttext language identification.",
|
| 155 |
+
allow_flagging='never')
|
| 156 |
+
|
| 157 |
iface.launch()
|
app_legacy.py → app_v0.py
RENAMED
|
File without changes
|
app_v1.py
ADDED
|
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# """
|
| 2 |
+
# Author: Amir Hossein Kargaran
|
| 3 |
+
# Date: August, 2023
|
| 4 |
+
|
| 5 |
+
# Description: This code applies LIME (Local Interpretable Model-Agnostic Explanations) on fasttext language identification.
|
| 6 |
+
|
| 7 |
+
# MIT License
|
| 8 |
+
|
| 9 |
+
# Some part of the code is adopted from here: https://gist.github.com/ageitgey/60a8b556a9047a4ca91d6034376e5980
|
| 10 |
+
# """
|
| 11 |
+
|
| 12 |
+
import gradio as gr
|
| 13 |
+
from io import BytesIO
|
| 14 |
+
from fasttext.FastText import _FastText
|
| 15 |
+
import re
|
| 16 |
+
import lime.lime_text
|
| 17 |
+
import numpy as np
|
| 18 |
+
from PIL import Image
|
| 19 |
+
from huggingface_hub import hf_hub_download
|
| 20 |
+
from selenium import webdriver
|
| 21 |
+
from selenium.common.exceptions import WebDriverException
|
| 22 |
+
import os
|
| 23 |
+
|
| 24 |
+
# Load the FastText language identification model from Hugging Face Hub
|
| 25 |
+
model_path = hf_hub_download(repo_id="facebook/fasttext-language-identification", filename="model.bin")
|
| 26 |
+
|
| 27 |
+
# Create the FastText classifier
|
| 28 |
+
classifier = _FastText(model_path)
|
| 29 |
+
|
| 30 |
+
def remove_label_prefix(item):
|
| 31 |
+
return item.replace('__label__', '')
|
| 32 |
+
|
| 33 |
+
def remove_label_prefix_list(input_list):
|
| 34 |
+
if isinstance(input_list[0], list):
|
| 35 |
+
return [[remove_label_prefix(item) for item in inner_list] for inner_list in input_list]
|
| 36 |
+
else:
|
| 37 |
+
return [remove_label_prefix(item) for item in input_list]
|
| 38 |
+
|
| 39 |
+
class_names = remove_label_prefix_list(classifier.labels)
|
| 40 |
+
class_names = np.sort(class_names)
|
| 41 |
+
num_class = len(class_names)
|
| 42 |
+
|
| 43 |
+
def tokenize_string(string):
|
| 44 |
+
return string.split()
|
| 45 |
+
|
| 46 |
+
explainer = lime.lime_text.LimeTextExplainer(
|
| 47 |
+
split_expression=tokenize_string,
|
| 48 |
+
bow=False,
|
| 49 |
+
class_names=class_names
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
def fasttext_prediction_in_sklearn_format(classifier, texts):
|
| 53 |
+
res = []
|
| 54 |
+
labels, probabilities = classifier.predict(texts, num_class)
|
| 55 |
+
labels = remove_label_prefix_list(labels)
|
| 56 |
+
for label, probs, text in zip(labels, probabilities, texts):
|
| 57 |
+
order = np.argsort(np.array(label))
|
| 58 |
+
res.append(probs[order])
|
| 59 |
+
return np.array(res)
|
| 60 |
+
|
| 61 |
+
def generate_explanation_html(input_sentence):
|
| 62 |
+
preprocessed_sentence = input_sentence
|
| 63 |
+
exp = explainer.explain_instance(
|
| 64 |
+
preprocessed_sentence,
|
| 65 |
+
classifier_fn=lambda x: fasttext_prediction_in_sklearn_format(classifier, x),
|
| 66 |
+
top_labels=2,
|
| 67 |
+
num_features=20,
|
| 68 |
+
)
|
| 69 |
+
output_html_filename = "explanation.html"
|
| 70 |
+
exp.save_to_file(output_html_filename)
|
| 71 |
+
return output_html_filename
|
| 72 |
+
|
| 73 |
+
def take_screenshot(local_html_path):
|
| 74 |
+
options = webdriver.ChromeOptions()
|
| 75 |
+
options.add_argument('--headless')
|
| 76 |
+
options.add_argument('--no-sandbox')
|
| 77 |
+
options.add_argument('--disable-dev-shm-usage')
|
| 78 |
+
|
| 79 |
+
try:
|
| 80 |
+
local_html_path = os.path.abspath(local_html_path)
|
| 81 |
+
wd = webdriver.Chrome(options=options)
|
| 82 |
+
wd.set_window_size(1366, 728)
|
| 83 |
+
wd.get('file://' + local_html_path)
|
| 84 |
+
wd.implicitly_wait(10)
|
| 85 |
+
screenshot = wd.get_screenshot_as_png()
|
| 86 |
+
except WebDriverException as e:
|
| 87 |
+
return Image.new('RGB', (1, 1))
|
| 88 |
+
finally:
|
| 89 |
+
if wd:
|
| 90 |
+
wd.quit()
|
| 91 |
+
|
| 92 |
+
return Image.open(BytesIO(screenshot))
|
| 93 |
+
|
| 94 |
+
def merge(input_sentence):
|
| 95 |
+
input_sentence = input_sentence.replace('\n', ' ')
|
| 96 |
+
output_html_filename = generate_explanation_html(input_sentence)
|
| 97 |
+
im = take_screenshot(output_html_filename)
|
| 98 |
+
|
| 99 |
+
return im, output_html_filename
|
| 100 |
+
|
| 101 |
+
input_sentence = gr.inputs.Textbox(label="Input Sentence")
|
| 102 |
+
|
| 103 |
+
output_explanation = gr.outputs.File(label="Explanation HTML")
|
| 104 |
+
|
| 105 |
+
iface = gr.Interface(
|
| 106 |
+
fn=merge,
|
| 107 |
+
inputs=input_sentence,
|
| 108 |
+
outputs=[gr.Image(type="pil", height=364, width=683, label = "Explanation Image"), output_explanation],
|
| 109 |
+
title="LIME LID",
|
| 110 |
+
description="This code applies LIME (Local Interpretable Model-Agnostic Explanations) on fasttext language identification.",
|
| 111 |
+
allow_flagging='never'
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
iface.launch()
|