Spaces:
Build error
Build error
| import os | |
| from typing import Optional | |
| import numpy as np | |
| import math | |
| from PIL import Image | |
| import torch | |
| import torch.nn as nn | |
| from torch.utils.data import DataLoader | |
| from torchvision.transforms import ( | |
| CenterCrop, | |
| Compose, | |
| Normalize, | |
| RandomHorizontalFlip, | |
| RandomResizedCrop, | |
| RandomRotation, | |
| RandomAffine, | |
| Resize, | |
| ToTensor) | |
| # from transformers import ViTImageProcessor | |
| # from transformers import ViTForImageClassification | |
| from transformers import AdamW | |
| from transformers import AutoImageProcessor, ResNetForImageClassification | |
| import lightning as L | |
| from src.data import RetinopathyDataset, Split | |
| from src.metrics import Metrics | |
| def worker_init_fn(worker_id: int) -> None: | |
| """ Initialize workers in a way that they draw different | |
| random samples and do not repeat identical pseudorandom | |
| sequences of each other, which may be the case with Fork | |
| multiprocessing. | |
| Args: | |
| worker_id (int): id of a preprocessing worker process launched | |
| by one DDP training process. | |
| """ | |
| state = np.random.get_state() | |
| assert isinstance(state, tuple) | |
| assert isinstance(state[1], np.ndarray) | |
| seed_arr = state[1] | |
| seed_np = seed_arr[0] + worker_id | |
| np.random.seed(seed_np) | |
| seed_pt = seed_np + 1111 | |
| torch.manual_seed(seed_pt) | |
| print(f"Setting numpy seed to {seed_np} and pytorch seed to {seed_pt} in worker {worker_id}") | |
| class ViTLightningModule(L.LightningModule): | |
| """ Lightning Module that implements neural network training hooks. """ | |
| def __init__(self, debug: bool) -> None: | |
| super().__init__() | |
| self.save_hyperparameters() | |
| np.random.seed(53) | |
| # pretrained_name = 'google/vit-base-patch16-224-in21k' | |
| # pretrained_name = 'google/vit-base-patch16-384-in21k' | |
| # pretrained_name = "microsoft/resnet-50" | |
| pretrained_name = "microsoft/resnet-34" | |
| # processor = ViTImageProcessor.from_pretrained(pretrained_name) | |
| processor = AutoImageProcessor.from_pretrained(pretrained_name) | |
| image_mean = processor.image_mean # type: ignore | |
| image_std = processor.image_std # type: ignore | |
| # size = processor.size["height"] # type: ignore | |
| # size = processor.size["shortest_edge"] # type: ignore | |
| size = 896 # 448 | |
| normalize = Normalize(mean=image_mean, std=image_std) | |
| train_transforms = Compose( | |
| [ | |
| # RandomRotation((-180, 180)), | |
| RandomAffine((-180, 180), shear=10), | |
| RandomResizedCrop(size, scale=(0.5, 1.0)), | |
| RandomHorizontalFlip(), | |
| ToTensor(), | |
| normalize, | |
| ] | |
| ) | |
| val_transforms = Compose( | |
| [ | |
| Resize(size), | |
| CenterCrop(size), | |
| ToTensor(), | |
| normalize, | |
| ] | |
| ) | |
| self.dataset = RetinopathyDataset("retinopathy_data") | |
| # print_data_stats(self.dataset, "all_data") | |
| train_data, val_data = Split.make_splits( | |
| self.dataset, | |
| train_transforms=(train_transforms, torch.tensor), | |
| val_transforms=(val_transforms, torch.tensor), | |
| train_fraction=0.9, | |
| stratify_train=True, | |
| stratify_val=True, | |
| ) | |
| assert len(set(train_data.indices).intersection(set(val_data.indices))) == 0 | |
| label2id = {label: id for id, label in self.dataset.label_map.items()} | |
| num_classes = len(self.dataset.label_map) | |
| labelmap = self.dataset.label_map | |
| assert len(labelmap) == num_classes | |
| assert set(labelmap.keys()) == set(range(num_classes)) | |
| train_batch_size = 4 if debug else 20 | |
| val_batch_size = 4 if debug else 20 | |
| num_gpus = torch.cuda.device_count() | |
| print(f"{num_gpus=}") | |
| num_cores = torch.get_num_threads() | |
| print(f"{num_cores=}") | |
| num_threads_per_gpu = max(1, int(math.ceil(num_cores / num_gpus))) \ | |
| if num_gpus > 0 else 1 | |
| num_workers = 1 if debug else num_threads_per_gpu | |
| print(f"{num_workers=}") | |
| self._train_dataloader = DataLoader( | |
| train_data, | |
| shuffle=True, | |
| num_workers=num_workers, | |
| persistent_workers=num_workers > 0, | |
| pin_memory=True, | |
| batch_size=train_batch_size, | |
| worker_init_fn=worker_init_fn, | |
| ) | |
| self._val_dataloader = DataLoader( | |
| val_data, | |
| shuffle=False, | |
| num_workers=num_workers, | |
| persistent_workers=num_workers > 0, | |
| pin_memory=True, | |
| batch_size=val_batch_size, | |
| ) | |
| # print_data_stats(self._val_dataloader, "val") | |
| # print_data_stats(self._train_dataloader, "train") | |
| img_batch, label_batch = next(iter(self._train_dataloader)) | |
| assert isinstance(img_batch, torch.Tensor) | |
| assert isinstance(label_batch, torch.Tensor) | |
| print(f"{img_batch.shape=} {label_batch.shape=}") | |
| assert img_batch.shape == (train_batch_size, 3, size, size) | |
| assert label_batch.shape == (train_batch_size,) | |
| self.example_input_array = torch.randn_like(img_batch) | |
| # self._model = ViTForImageClassification.from_pretrained( | |
| # pretrained_name, | |
| # num_labels=len(self.dataset.label_map), | |
| # id2label=self.dataset.label_map, | |
| # label2id=label2id) | |
| self._model = ResNetForImageClassification.from_pretrained( | |
| pretrained_name, | |
| num_labels=len(self.dataset.label_map), | |
| id2label=self.dataset.label_map, | |
| label2id=label2id, | |
| ignore_mismatched_sizes=True) | |
| assert isinstance(self._model, nn.Module) | |
| self.train_metrics: Optional[Metrics] = None | |
| self.val_metrics: Optional[Metrics] = None | |
| def num_classes(self): | |
| return len(self.dataset.label_map) | |
| def labelmap(self): | |
| return self.dataset.label_map | |
| def forward(self, img_batch): | |
| outputs = self._model(img_batch) # type: ignore | |
| return outputs.logits | |
| def common_step(self, batch, batch_idx): | |
| img_batch, label_batch = batch | |
| logits = self(img_batch) | |
| criterion = nn.CrossEntropyLoss() | |
| loss = criterion(logits, label_batch) | |
| preds_batch = logits.argmax(-1) | |
| return loss, preds_batch, label_batch | |
| def on_train_epoch_start(self) -> None: | |
| self.train_metrics = Metrics( | |
| self.num_classes, | |
| self.labelmap, | |
| "train", | |
| self.log).to(self.device) | |
| def training_step(self, batch, batch_idx): | |
| loss, preds, labels = self.common_step(batch, batch_idx) | |
| assert self.train_metrics is not None | |
| self.train_metrics.update(loss, preds, labels) | |
| if False and batch_idx == 0: | |
| self._dump_train_images() | |
| return loss | |
| def _dump_train_images(self) -> None: | |
| """ Save augmented images to disk for inspection. """ | |
| img_batch, label_batch = next(iter(self._train_dataloader)) | |
| for i_img, (img, label) in enumerate(zip(img_batch, label_batch)): | |
| img_np = img.cpu().numpy() | |
| denorm_np = (img_np - img_np.min()) / (img_np.max() - img_np.min()) | |
| img_uint8 = (255 * denorm_np).astype(np.uint8) | |
| pil_img = Image.fromarray(np.transpose(img_uint8, (1, 2, 0))) | |
| if self.logger is not None and self.logger.log_dir is not None: | |
| assert isinstance(self.logger.log_dir, str) | |
| os.makedirs(self.logger.log_dir, exist_ok=True) | |
| path = os.path.join(self.logger.log_dir, | |
| f"img_{i_img:02d}_{label.item()}.png") | |
| pil_img.save(path) | |
| def on_train_epoch_end(self) -> None: | |
| assert self.train_metrics is not None | |
| self.train_metrics.log() | |
| assert self.logger is not None | |
| if self.logger.log_dir is not None: | |
| path = os.path.join(self.logger.log_dir, "inference") | |
| self.save_checkpoint_dk(path) | |
| def save_checkpoint_dk(self, dirpath: str) -> None: | |
| if self.global_rank == 0: | |
| self._model.save_pretrained(dirpath) | |
| def validation_step(self, batch, batch_idx): | |
| loss, preds, labels = self.common_step(batch, batch_idx) | |
| assert self.val_metrics is not None | |
| self.val_metrics.update(loss, preds, labels) | |
| return loss | |
| def on_validation_epoch_start(self) -> None: | |
| self.val_metrics = Metrics( | |
| self.num_classes, | |
| self.labelmap, | |
| "val", | |
| self.log).to(self.device) | |
| def on_validation_epoch_end(self) -> None: | |
| assert self.val_metrics is not None | |
| self.val_metrics.log() | |
| def configure_optimizers(self): | |
| # No WD is the same as 1e-3 and better than 1e-2 | |
| # LR 1e-3 is worse than 1e-4 (without LR scheduler) | |
| return AdamW(self.parameters(), | |
| lr=1e-4, | |
| ) | |