Spaces:
				
			
			
	
			
			
		Build error
		
	
	
	
			
			
	
	
	
	
		
		
		Build error
		
	Commit 
							
							·
						
						699342a
	
1
								Parent(s):
							
							8751a91
								
Initial implementation of trainer and gradio app
Browse files- .gitattributes +3 -0
- .gitignore +6 -156
- app.py +123 -0
- labelmap.py +7 -0
- mypy.ini +3 -0
- tag.sh +2 -0
- train.py +563 -0
- train_a100_x1.sh +27 -0
- train_a100_x4.sh +27 -0
- train_v100_x1.sh +27 -0
- train_v100_x4.sh +27 -0
    	
        .gitattributes
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            media/* filter=lfs diff=lfs merge=lfs -text
         | 
| 2 | 
            +
            release_ckpts/** filter=lfs diff=lfs merge=lfs -text
         | 
| 3 | 
            +
            demo_data/** filter=lfs diff=lfs merge=lfs -text
         | 
    	
        .gitignore
    CHANGED
    
    | @@ -1,160 +1,10 @@ | |
| 1 | 
            -
             | 
| 2 | 
            -
            __pycache__/
         | 
| 3 | 
            -
            *.py[cod]
         | 
| 4 | 
            -
            *$py.class
         | 
| 5 |  | 
| 6 | 
            -
             | 
| 7 | 
            -
             | 
| 8 |  | 
| 9 | 
            -
             | 
| 10 | 
            -
            .Python
         | 
| 11 | 
            -
            build/
         | 
| 12 | 
            -
            develop-eggs/
         | 
| 13 | 
            -
            dist/
         | 
| 14 | 
            -
            downloads/
         | 
| 15 | 
            -
            eggs/
         | 
| 16 | 
            -
            .eggs/
         | 
| 17 | 
            -
            lib/
         | 
| 18 | 
            -
            lib64/
         | 
| 19 | 
            -
            parts/
         | 
| 20 | 
            -
            sdist/
         | 
| 21 | 
            -
            var/
         | 
| 22 | 
            -
            wheels/
         | 
| 23 | 
            -
            share/python-wheels/
         | 
| 24 | 
            -
            *.egg-info/
         | 
| 25 | 
            -
            .installed.cfg
         | 
| 26 | 
            -
            *.egg
         | 
| 27 | 
            -
            MANIFEST
         | 
| 28 |  | 
| 29 | 
            -
             | 
| 30 | 
            -
            #  Usually these files are written by a python script from a template
         | 
| 31 | 
            -
            #  before PyInstaller builds the exe, so as to inject date/other infos into it.
         | 
| 32 | 
            -
            *.manifest
         | 
| 33 | 
            -
            *.spec
         | 
| 34 |  | 
| 35 | 
            -
             | 
| 36 | 
            -
            pip-log.txt
         | 
| 37 | 
            -
            pip-delete-this-directory.txt
         | 
| 38 | 
            -
             | 
| 39 | 
            -
            # Unit test / coverage reports
         | 
| 40 | 
            -
            htmlcov/
         | 
| 41 | 
            -
            .tox/
         | 
| 42 | 
            -
            .nox/
         | 
| 43 | 
            -
            .coverage
         | 
| 44 | 
            -
            .coverage.*
         | 
| 45 | 
            -
            .cache
         | 
| 46 | 
            -
            nosetests.xml
         | 
| 47 | 
            -
            coverage.xml
         | 
| 48 | 
            -
            *.cover
         | 
| 49 | 
            -
            *.py,cover
         | 
| 50 | 
            -
            .hypothesis/
         | 
| 51 | 
            -
            .pytest_cache/
         | 
| 52 | 
            -
            cover/
         | 
| 53 | 
            -
             | 
| 54 | 
            -
            # Translations
         | 
| 55 | 
            -
            *.mo
         | 
| 56 | 
            -
            *.pot
         | 
| 57 | 
            -
             | 
| 58 | 
            -
            # Django stuff:
         | 
| 59 | 
            -
            *.log
         | 
| 60 | 
            -
            local_settings.py
         | 
| 61 | 
            -
            db.sqlite3
         | 
| 62 | 
            -
            db.sqlite3-journal
         | 
| 63 | 
            -
             | 
| 64 | 
            -
            # Flask stuff:
         | 
| 65 | 
            -
            instance/
         | 
| 66 | 
            -
            .webassets-cache
         | 
| 67 | 
            -
             | 
| 68 | 
            -
            # Scrapy stuff:
         | 
| 69 | 
            -
            .scrapy
         | 
| 70 | 
            -
             | 
| 71 | 
            -
            # Sphinx documentation
         | 
| 72 | 
            -
            docs/_build/
         | 
| 73 | 
            -
             | 
| 74 | 
            -
            # PyBuilder
         | 
| 75 | 
            -
            .pybuilder/
         | 
| 76 | 
            -
            target/
         | 
| 77 | 
            -
             | 
| 78 | 
            -
            # Jupyter Notebook
         | 
| 79 | 
            -
            .ipynb_checkpoints
         | 
| 80 | 
            -
             | 
| 81 | 
            -
            # IPython
         | 
| 82 | 
            -
            profile_default/
         | 
| 83 | 
            -
            ipython_config.py
         | 
| 84 | 
            -
             | 
| 85 | 
            -
            # pyenv
         | 
| 86 | 
            -
            #   For a library or package, you might want to ignore these files since the code is
         | 
| 87 | 
            -
            #   intended to run in multiple environments; otherwise, check them in:
         | 
| 88 | 
            -
            # .python-version
         | 
| 89 | 
            -
             | 
| 90 | 
            -
            # pipenv
         | 
| 91 | 
            -
            #   According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
         | 
| 92 | 
            -
            #   However, in case of collaboration, if having platform-specific dependencies or dependencies
         | 
| 93 | 
            -
            #   having no cross-platform support, pipenv may install dependencies that don't work, or not
         | 
| 94 | 
            -
            #   install all needed dependencies.
         | 
| 95 | 
            -
            #Pipfile.lock
         | 
| 96 | 
            -
             | 
| 97 | 
            -
            # poetry
         | 
| 98 | 
            -
            #   Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
         | 
| 99 | 
            -
            #   This is especially recommended for binary packages to ensure reproducibility, and is more
         | 
| 100 | 
            -
            #   commonly ignored for libraries.
         | 
| 101 | 
            -
            #   https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
         | 
| 102 | 
            -
            #poetry.lock
         | 
| 103 | 
            -
             | 
| 104 | 
            -
            # pdm
         | 
| 105 | 
            -
            #   Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
         | 
| 106 | 
            -
            #pdm.lock
         | 
| 107 | 
            -
            #   pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
         | 
| 108 | 
            -
            #   in version control.
         | 
| 109 | 
            -
            #   https://pdm.fming.dev/#use-with-ide
         | 
| 110 | 
            -
            .pdm.toml
         | 
| 111 | 
            -
             | 
| 112 | 
            -
            # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
         | 
| 113 | 
            -
            __pypackages__/
         | 
| 114 | 
            -
             | 
| 115 | 
            -
            # Celery stuff
         | 
| 116 | 
            -
            celerybeat-schedule
         | 
| 117 | 
            -
            celerybeat.pid
         | 
| 118 | 
            -
             | 
| 119 | 
            -
            # SageMath parsed files
         | 
| 120 | 
            -
            *.sage.py
         | 
| 121 | 
            -
             | 
| 122 | 
            -
            # Environments
         | 
| 123 | 
            -
            .env
         | 
| 124 | 
            -
            .venv
         | 
| 125 | 
            -
            env/
         | 
| 126 | 
            -
            venv/
         | 
| 127 | 
            -
            ENV/
         | 
| 128 | 
            -
            env.bak/
         | 
| 129 | 
            -
            venv.bak/
         | 
| 130 | 
            -
             | 
| 131 | 
            -
            # Spyder project settings
         | 
| 132 | 
            -
            .spyderproject
         | 
| 133 | 
            -
            .spyproject
         | 
| 134 | 
            -
             | 
| 135 | 
            -
            # Rope project settings
         | 
| 136 | 
            -
            .ropeproject
         | 
| 137 | 
            -
             | 
| 138 | 
            -
            # mkdocs documentation
         | 
| 139 | 
            -
            /site
         | 
| 140 | 
            -
             | 
| 141 | 
            -
            # mypy
         | 
| 142 | 
            -
            .mypy_cache/
         | 
| 143 | 
            -
            .dmypy.json
         | 
| 144 | 
            -
            dmypy.json
         | 
| 145 | 
            -
             | 
| 146 | 
            -
            # Pyre type checker
         | 
| 147 | 
            -
            .pyre/
         | 
| 148 | 
            -
             | 
| 149 | 
            -
            # pytype static type analyzer
         | 
| 150 | 
            -
            .pytype/
         | 
| 151 | 
            -
             | 
| 152 | 
            -
            # Cython debug symbols
         | 
| 153 | 
            -
            cython_debug/
         | 
| 154 | 
            -
             | 
| 155 | 
            -
            # PyCharm
         | 
| 156 | 
            -
            #  JetBrains specific template is maintained in a separate JetBrains.gitignore that can
         | 
| 157 | 
            -
            #  be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
         | 
| 158 | 
            -
            #  and can be added to the global gitignore or merged into this file.  For a more nuclear
         | 
| 159 | 
            -
            #  option (not recommended) you can uncomment the following to ignore the entire idea folder.
         | 
| 160 | 
            -
            #.idea/
         | 
|  | |
| 1 | 
            +
            .vscode/
         | 
|  | |
|  | |
|  | |
| 2 |  | 
| 3 | 
            +
            /retinopathy_data
         | 
| 4 | 
            +
            /slurm_logs
         | 
| 5 |  | 
| 6 | 
            +
            /lightning_logs/
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 7 |  | 
| 8 | 
            +
            __pycache__
         | 
|  | |
|  | |
|  | |
|  | |
| 9 |  | 
| 10 | 
            +
            /dcgm/
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        app.py
    ADDED
    
    | @@ -0,0 +1,123 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import os
         | 
| 2 | 
            +
            import gradio as gr
         | 
| 3 | 
            +
            import numpy as np
         | 
| 4 | 
            +
            import torch
         | 
| 5 | 
            +
            from typing import Tuple, Optional, Dict, List
         | 
| 6 | 
            +
            import glob
         | 
| 7 | 
            +
            from collections import defaultdict
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            from transformers import (AutoImageProcessor,
         | 
| 10 | 
            +
                                      ResNetForImageClassification)
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            from labelmap import DR_LABELMAP
         | 
| 13 | 
            +
             | 
| 14 | 
            +
             | 
| 15 | 
            +
            class App:
         | 
| 16 | 
            +
                def __init__(self) -> None:
         | 
| 17 | 
            +
             | 
| 18 | 
            +
                    ckpt_name = "2023-12-24_20-02-18_30345221_V100_x4_resnet34/"
         | 
| 19 | 
            +
             | 
| 20 | 
            +
                    path = f"release_ckpts/{ckpt_name}/inference/"
         | 
| 21 | 
            +
             | 
| 22 | 
            +
                    self.image_processor = AutoImageProcessor.from_pretrained(path)
         | 
| 23 | 
            +
             | 
| 24 | 
            +
                    self.model = ResNetForImageClassification.from_pretrained(path)
         | 
| 25 | 
            +
             | 
| 26 | 
            +
                    example_lists = self._load_example_lists()
         | 
| 27 | 
            +
             | 
| 28 | 
            +
                    device = 'GPU' if torch.cuda.is_available() else 'CPU'
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                    css = ".output-image, .input-image, .image-preview {height: 600px !important}"
         | 
| 31 | 
            +
             | 
| 32 | 
            +
                    with gr.Blocks(css=css) as ui:
         | 
| 33 | 
            +
                        with gr.Row():
         | 
| 34 | 
            +
                            with gr.Column(scale=1):
         | 
| 35 | 
            +
                                with gr.Row():
         | 
| 36 | 
            +
                                    predict_btn = gr.Button("Predict", size="lg")
         | 
| 37 | 
            +
                                with gr.Row():
         | 
| 38 | 
            +
                                    gr.Markdown(f"Running on {device}")
         | 
| 39 | 
            +
                            with gr.Column(scale=4):
         | 
| 40 | 
            +
                                # output = gr.Textbox(label="Retinopathy level prediction")
         | 
| 41 | 
            +
                                output = gr.Label(num_top_classes=len(DR_LABELMAP),
         | 
| 42 | 
            +
                                                  label="Retinopathy level prediction")
         | 
| 43 | 
            +
                            with gr.Column(scale=4):
         | 
| 44 | 
            +
                                gr.Markdown("")
         | 
| 45 | 
            +
                        with gr.Row():
         | 
| 46 | 
            +
                            with gr.Column(scale=9, min_width=100):
         | 
| 47 | 
            +
                                image = gr.Image(label="Retina scan")
         | 
| 48 | 
            +
                            with gr.Column(scale=1, min_width=150):
         | 
| 49 | 
            +
                                for cls_id in range(len(example_lists)):
         | 
| 50 | 
            +
                                    label = DR_LABELMAP[cls_id]
         | 
| 51 | 
            +
                                    with gr.Tab(f"{cls_id} : {label}"):
         | 
| 52 | 
            +
                                        gr.Examples(
         | 
| 53 | 
            +
                                            example_lists[cls_id],
         | 
| 54 | 
            +
                                            inputs=[image],
         | 
| 55 | 
            +
                                            outputs=[output],
         | 
| 56 | 
            +
                                            fn=self.predict,
         | 
| 57 | 
            +
                                            examples_per_page=10,
         | 
| 58 | 
            +
                                            run_on_click=True)
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                        predict_btn.click(
         | 
| 61 | 
            +
                            fn=self.predict,
         | 
| 62 | 
            +
                            inputs=image,
         | 
| 63 | 
            +
                            outputs=output,
         | 
| 64 | 
            +
                            api_name="predict")
         | 
| 65 | 
            +
                    
         | 
| 66 | 
            +
                    self.ui = ui
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                def launch(self) -> None:
         | 
| 69 | 
            +
                    self.ui.queue().launch(share=True)
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                def predict(self, image: Optional[np.ndarray]):
         | 
| 72 | 
            +
                    if image is None:
         | 
| 73 | 
            +
                        return dict()
         | 
| 74 | 
            +
                    cls_name, prob, probs = self._infer(image)
         | 
| 75 | 
            +
                    message = f"Predicted class={cls_name}, prob={prob:.3f}"
         | 
| 76 | 
            +
                    print(message)
         | 
| 77 | 
            +
                    probs_dict = {f"{i} - {DR_LABELMAP[i]}": float(v)
         | 
| 78 | 
            +
                                  for i, v in enumerate(probs)}
         | 
| 79 | 
            +
                    return probs_dict
         | 
| 80 | 
            +
                
         | 
| 81 | 
            +
                def _infer(self, image_chw: np.ndarray) -> Tuple[str, float, np.ndarray]:
         | 
| 82 | 
            +
                    assert isinstance(self.model, ResNetForImageClassification)
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                    inputs = self.image_processor(image_chw, return_tensors="pt")
         | 
| 85 | 
            +
             | 
| 86 | 
            +
                    with torch.no_grad():
         | 
| 87 | 
            +
                        output = self.model(**inputs)
         | 
| 88 | 
            +
             | 
| 89 | 
            +
                    logits_batch = output.logits
         | 
| 90 | 
            +
                    assert len(logits_batch.shape) == 2
         | 
| 91 | 
            +
                    assert logits_batch.shape[0] == 1
         | 
| 92 | 
            +
                    logits = logits_batch[0]
         | 
| 93 | 
            +
                    probs = torch.softmax(logits, dim=-1)
         | 
| 94 | 
            +
                    predicted_label = int(probs.argmax(-1).item())
         | 
| 95 | 
            +
                    prob = probs[predicted_label].item()
         | 
| 96 | 
            +
                    cls_name = self.model.config.id2label[predicted_label]
         | 
| 97 | 
            +
                    return cls_name, prob, probs.numpy()
         | 
| 98 | 
            +
             | 
| 99 | 
            +
                @staticmethod
         | 
| 100 | 
            +
                def _load_example_lists() -> Dict[int, List[str]]:
         | 
| 101 | 
            +
             | 
| 102 | 
            +
                    example_flat_list = glob.glob("demo_data/train/**/*.jpeg")
         | 
| 103 | 
            +
             | 
| 104 | 
            +
                    example_lists: Dict[int, List[str]] = defaultdict(list)
         | 
| 105 | 
            +
                    for path in example_flat_list:
         | 
| 106 | 
            +
                        dir, _ = os.path.split(path)
         | 
| 107 | 
            +
                        _, subdir = os.path.split(dir)
         | 
| 108 | 
            +
                        try:
         | 
| 109 | 
            +
                            cls_id = int(subdir)
         | 
| 110 | 
            +
                        except ValueError:
         | 
| 111 | 
            +
                            print(f"Cannot parse path {path}")
         | 
| 112 | 
            +
                            continue
         | 
| 113 | 
            +
                        example_lists[cls_id].append(path)
         | 
| 114 | 
            +
                    return example_lists
         | 
| 115 | 
            +
             | 
| 116 | 
            +
             | 
| 117 | 
            +
            def main():
         | 
| 118 | 
            +
                app = App()
         | 
| 119 | 
            +
                app.launch()
         | 
| 120 | 
            +
             | 
| 121 | 
            +
             | 
| 122 | 
            +
            if __name__ == "__main__":
         | 
| 123 | 
            +
                main()
         | 
    	
        labelmap.py
    ADDED
    
    | @@ -0,0 +1,7 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            DR_LABELMAP = {
         | 
| 2 | 
            +
                0: 'No DR',
         | 
| 3 | 
            +
                1: 'Mild',
         | 
| 4 | 
            +
                2: 'Moderate',
         | 
| 5 | 
            +
                3: 'Severe',
         | 
| 6 | 
            +
                4: 'Proliferative DR',
         | 
| 7 | 
            +
            }
         | 
    	
        mypy.ini
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            [mypy]
         | 
| 2 | 
            +
            ignore_missing_imports = True
         | 
| 3 | 
            +
            check_untyped_defs = True
         | 
    	
        tag.sh
    ADDED
    
    | @@ -0,0 +1,2 @@ | |
|  | |
|  | 
|  | |
| 1 | 
            +
            TAG=stratval_24h
         | 
| 2 | 
            +
            EXTRA_KEY=
         | 
    	
        train.py
    ADDED
    
    | @@ -0,0 +1,563 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import os
         | 
| 2 | 
            +
            from typing import (Any, List, Dict, Optional, Tuple,
         | 
| 3 | 
            +
                                Union, Callable, Iterable, Iterator)
         | 
| 4 | 
            +
            import pandas as pd
         | 
| 5 | 
            +
            from PIL import Image
         | 
| 6 | 
            +
            import datetime
         | 
| 7 | 
            +
            from argparse import ArgumentParser
         | 
| 8 | 
            +
            from enum import Enum
         | 
| 9 | 
            +
            import numpy as np
         | 
| 10 | 
            +
            from numpy.random import RandomState
         | 
| 11 | 
            +
            import collections.abc
         | 
| 12 | 
            +
            from collections import Counter, defaultdict
         | 
| 13 | 
            +
            import math
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            import torch
         | 
| 16 | 
            +
            import torch.nn as nn
         | 
| 17 | 
            +
            import torch.utils.data as data
         | 
| 18 | 
            +
            from torch.utils.data import DataLoader
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            from torchvision.transforms import (
         | 
| 21 | 
            +
                CenterCrop, 
         | 
| 22 | 
            +
                Compose, 
         | 
| 23 | 
            +
                Normalize, 
         | 
| 24 | 
            +
                RandomHorizontalFlip,
         | 
| 25 | 
            +
                RandomResizedCrop, 
         | 
| 26 | 
            +
                RandomRotation,
         | 
| 27 | 
            +
                RandomAffine,
         | 
| 28 | 
            +
                Resize, 
         | 
| 29 | 
            +
                ToTensor)
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            from transformers import ViTImageProcessor
         | 
| 32 | 
            +
            from transformers import ViTForImageClassification
         | 
| 33 | 
            +
            from transformers import AdamW
         | 
| 34 | 
            +
             | 
| 35 | 
            +
            from transformers import AutoImageProcessor, ResNetForImageClassification
         | 
| 36 | 
            +
             | 
| 37 | 
            +
            import lightning as L
         | 
| 38 | 
            +
            from lightning import Trainer
         | 
| 39 | 
            +
            from lightning.pytorch.loggers import TensorBoardLogger
         | 
| 40 | 
            +
            from lightning.pytorch.callbacks import ModelSummary
         | 
| 41 | 
            +
            from torchmetrics.aggregation import MeanMetric
         | 
| 42 | 
            +
            from torchmetrics.classification.accuracy import MulticlassAccuracy
         | 
| 43 | 
            +
            from torchmetrics.classification import MulticlassCohenKappa
         | 
| 44 | 
            +
             | 
| 45 | 
            +
            from labelmap import DR_LABELMAP
         | 
| 46 | 
            +
             | 
| 47 | 
            +
             | 
| 48 | 
            +
            DataRecord = Tuple[Image.Image, int]
         | 
| 49 | 
            +
             | 
| 50 | 
            +
             | 
| 51 | 
            +
            class RetinopathyDataset(data.Dataset[DataRecord]):
         | 
| 52 | 
            +
                def __init__(self, data_path: str) -> None:
         | 
| 53 | 
            +
                    super().__init__()
         | 
| 54 | 
            +
             | 
| 55 | 
            +
                    self.data_path = data_path
         | 
| 56 | 
            +
             | 
| 57 | 
            +
                    self.ext = ".jpeg"
         | 
| 58 | 
            +
             | 
| 59 | 
            +
                    anno_path = os.path.join(data_path, "trainLabels.csv")
         | 
| 60 | 
            +
                    self.anno_df = pd.read_csv(anno_path) # ['image', 'level']
         | 
| 61 | 
            +
                    anno_name_set = set(self.anno_df['image']) 
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                    if True:
         | 
| 64 | 
            +
                        train_path = os.path.join(data_path, "train")
         | 
| 65 | 
            +
                        img_path_list = os.listdir(train_path)
         | 
| 66 | 
            +
                        img_name_set = set([os.path.splitext(p)[0] for p in img_path_list])
         | 
| 67 | 
            +
                        assert anno_name_set == img_name_set
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                    self.label_map = DR_LABELMAP
         | 
| 70 | 
            +
                
         | 
| 71 | 
            +
                def __getitem__(self, index: Union[int, slice]) -> DataRecord:
         | 
| 72 | 
            +
                    assert isinstance(index, int)
         | 
| 73 | 
            +
                    img_path = self.get_path_at(index)
         | 
| 74 | 
            +
                    img = Image.open(img_path)
         | 
| 75 | 
            +
                    label = self.get_label_at(index)
         | 
| 76 | 
            +
                    return img, label
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                def __len__(self) -> int:
         | 
| 79 | 
            +
                    return len(self.anno_df)
         | 
| 80 | 
            +
                
         | 
| 81 | 
            +
                def get_label_at(self, index: int) -> int:
         | 
| 82 | 
            +
                    label = self.anno_df['level'].iloc[index].item()
         | 
| 83 | 
            +
                    return label
         | 
| 84 | 
            +
             | 
| 85 | 
            +
                def get_path_at(self, index: int) -> str:
         | 
| 86 | 
            +
                    img_name = self.anno_df['image'].iloc[index]
         | 
| 87 | 
            +
                    img_path = os.path.join(self.data_path, "train", img_name+self.ext)
         | 
| 88 | 
            +
                    return img_path
         | 
| 89 | 
            +
             | 
| 90 | 
            +
             | 
| 91 | 
            +
            class Purpose(Enum):
         | 
| 92 | 
            +
                Train = 0
         | 
| 93 | 
            +
                Val = 1
         | 
| 94 | 
            +
             | 
| 95 | 
            +
             | 
| 96 | 
            +
            FeatureAndTargetTransforms = Tuple[Callable[..., torch.Tensor],
         | 
| 97 | 
            +
                                               Callable[..., torch.Tensor]]
         | 
| 98 | 
            +
             | 
| 99 | 
            +
            TensorRecord = Tuple[torch.Tensor, torch.Tensor]
         | 
| 100 | 
            +
             | 
| 101 | 
            +
            def normalize(arr: np.ndarray) -> np.ndarray:
         | 
| 102 | 
            +
                return arr / np.sum(arr)
         | 
| 103 | 
            +
             | 
| 104 | 
            +
             | 
| 105 | 
            +
            class Split(data.Dataset[TensorRecord], collections.abc.Sequence[TensorRecord]):
         | 
| 106 | 
            +
                def __init__(self, dataset: RetinopathyDataset,
         | 
| 107 | 
            +
                             indices: np.ndarray,
         | 
| 108 | 
            +
                             purpose: Purpose,
         | 
| 109 | 
            +
                             transforms: FeatureAndTargetTransforms,
         | 
| 110 | 
            +
                             oversample_factor: int = 1,
         | 
| 111 | 
            +
                             stratify_classes: bool = False,
         | 
| 112 | 
            +
                             use_log_frequencies: bool = False,
         | 
| 113 | 
            +
                             ):
         | 
| 114 | 
            +
             | 
| 115 | 
            +
                    self.dataset = dataset
         | 
| 116 | 
            +
                    self.indices = indices
         | 
| 117 | 
            +
                    self.purpose = purpose
         | 
| 118 | 
            +
                    self.feature_transform = transforms[0]
         | 
| 119 | 
            +
                    self.target_transform = transforms[1]
         | 
| 120 | 
            +
                    self.oversample_factor = oversample_factor
         | 
| 121 | 
            +
                    self.stratify_classes = stratify_classes
         | 
| 122 | 
            +
                    self.use_log_frequencies = use_log_frequencies
         | 
| 123 | 
            +
             | 
| 124 | 
            +
                    self.per_class_indices: Optional[Dict[int, np.ndarray]] = None
         | 
| 125 | 
            +
                    self.frequencies: Optional[Dict[int, float]] = None
         | 
| 126 | 
            +
                    if self.stratify_classes:
         | 
| 127 | 
            +
                        self.bucketize_indices()
         | 
| 128 | 
            +
                        if self.use_log_frequencies:
         | 
| 129 | 
            +
                            self.calc_frequencies()
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                def calc_frequencies(self):
         | 
| 132 | 
            +
                    assert self.per_class_indices is not None
         | 
| 133 | 
            +
                    counts_dict = {lbl: len(arr) for lbl, arr in self.per_class_indices.items()}
         | 
| 134 | 
            +
                    counts = np.array(list(counts_dict.values()))
         | 
| 135 | 
            +
                    counts_nrm = normalize(counts)
         | 
| 136 | 
            +
                    temperature = 50.0 # > 1 to even-out frequencies
         | 
| 137 | 
            +
                    freqs = normalize(np.log1p(counts_nrm * temperature))
         | 
| 138 | 
            +
                    self.frequencies = {k: freq.item() for k, freq
         | 
| 139 | 
            +
                                        in zip(self.per_class_indices.keys(), freqs)}
         | 
| 140 | 
            +
                    print(self.frequencies)
         | 
| 141 | 
            +
             | 
| 142 | 
            +
                def bucketize_indices(self):
         | 
| 143 | 
            +
                    buckets = defaultdict(list)
         | 
| 144 | 
            +
                    for index in self.indices:
         | 
| 145 | 
            +
                        label = self.dataset.get_label_at(index)
         | 
| 146 | 
            +
                        buckets[label].append(index)
         | 
| 147 | 
            +
                    self.per_class_indices = {k: np.array(v)
         | 
| 148 | 
            +
                                              for k, v in buckets.items()}
         | 
| 149 | 
            +
             | 
| 150 | 
            +
                def __getitem__(self, index: Union[int, slice]) -> TensorRecord: # type: ignore[override]
         | 
| 151 | 
            +
                    assert isinstance(index, int)
         | 
| 152 | 
            +
                    if self.purpose == Purpose.Train:
         | 
| 153 | 
            +
                        index_rem = index % len(self.indices)
         | 
| 154 | 
            +
                        idx = self.indices[index_rem].item()
         | 
| 155 | 
            +
                    else:
         | 
| 156 | 
            +
                        idx = self.indices[index].item()
         | 
| 157 | 
            +
                    if self.per_class_indices:
         | 
| 158 | 
            +
                        if self.frequencies is not None:
         | 
| 159 | 
            +
                            arange = np.arange(len(self.per_class_indices))
         | 
| 160 | 
            +
                            frequencies = np.zeros(len(self.per_class_indices), dtype=float)
         | 
| 161 | 
            +
                            for k, v in self.frequencies.items():
         | 
| 162 | 
            +
                                frequencies[k] = v
         | 
| 163 | 
            +
                            random_key = np.random.choice(
         | 
| 164 | 
            +
                                arange,
         | 
| 165 | 
            +
                                p=frequencies)
         | 
| 166 | 
            +
                        else:
         | 
| 167 | 
            +
                            random_key = np.random.randint(len(self.per_class_indices))
         | 
| 168 | 
            +
             | 
| 169 | 
            +
                        indices = self.per_class_indices[random_key]
         | 
| 170 | 
            +
                        actual_index = np.random.choice(indices).item()
         | 
| 171 | 
            +
                    else:
         | 
| 172 | 
            +
                        actual_index = idx
         | 
| 173 | 
            +
                    feature, target = self.dataset[actual_index]
         | 
| 174 | 
            +
                    feature_tensor = self.feature_transform(feature)
         | 
| 175 | 
            +
                    target_tensor = self.target_transform(target)
         | 
| 176 | 
            +
                    return feature_tensor, target_tensor
         | 
| 177 | 
            +
             | 
| 178 | 
            +
                def __len__(self):
         | 
| 179 | 
            +
                    if self.purpose == Purpose.Train:
         | 
| 180 | 
            +
                        return len(self.indices) * self.oversample_factor
         | 
| 181 | 
            +
                    else:
         | 
| 182 | 
            +
                        return len(self.indices)
         | 
| 183 | 
            +
             | 
| 184 | 
            +
                @staticmethod
         | 
| 185 | 
            +
                def make_splits(all_data: RetinopathyDataset,
         | 
| 186 | 
            +
                                train_transforms: FeatureAndTargetTransforms,
         | 
| 187 | 
            +
                                val_transforms: FeatureAndTargetTransforms,
         | 
| 188 | 
            +
                                train_fraction: float,
         | 
| 189 | 
            +
                                stratify_train: bool,
         | 
| 190 | 
            +
                                stratify_val: bool,
         | 
| 191 | 
            +
                                seed: int = 54,
         | 
| 192 | 
            +
                                ) -> Tuple['Split', 'Split']:
         | 
| 193 | 
            +
             | 
| 194 | 
            +
                    prng = RandomState(seed)
         | 
| 195 | 
            +
             | 
| 196 | 
            +
                    num_train = int(len(all_data) * train_fraction)
         | 
| 197 | 
            +
                    all_indices = prng.permutation(len(all_data))
         | 
| 198 | 
            +
                    train_indices = all_indices[:num_train]
         | 
| 199 | 
            +
                    val_indices = all_indices[num_train:]
         | 
| 200 | 
            +
                    train_data = Split(all_data, train_indices, Purpose.Train,
         | 
| 201 | 
            +
                                       train_transforms, stratify_classes=stratify_train)
         | 
| 202 | 
            +
                    val_data = Split(all_data, val_indices, Purpose.Val,
         | 
| 203 | 
            +
                                     val_transforms, stratify_classes=stratify_val)
         | 
| 204 | 
            +
                    return train_data, val_data
         | 
| 205 | 
            +
             | 
| 206 | 
            +
             | 
| 207 | 
            +
            def print_data_stats(dataset: Union[Iterable[DataRecord], DataLoader], split_name: str) -> None:
         | 
| 208 | 
            +
                labels = []
         | 
| 209 | 
            +
                for _, label in dataset:
         | 
| 210 | 
            +
                    if isinstance(label, torch.Tensor):
         | 
| 211 | 
            +
                        label = label.cpu().numpy()
         | 
| 212 | 
            +
                    labels.append(label)
         | 
| 213 | 
            +
                labels = np.concatenate(labels)
         | 
| 214 | 
            +
                cnt = Counter(labels)
         | 
| 215 | 
            +
                print(cnt)
         | 
| 216 | 
            +
             | 
| 217 | 
            +
             | 
| 218 | 
            +
            class Metrics:
         | 
| 219 | 
            +
                def __init__(self,
         | 
| 220 | 
            +
                                num_classes: int,
         | 
| 221 | 
            +
                                labelmap: Dict[int, str],
         | 
| 222 | 
            +
                                split: str,
         | 
| 223 | 
            +
                                log_fn: Callable[..., None]) -> None:
         | 
| 224 | 
            +
                    self.labelmap = labelmap
         | 
| 225 | 
            +
                    self.loss = MeanMetric(nan_strategy='ignore')
         | 
| 226 | 
            +
                    self.accuracy = MulticlassAccuracy(num_classes=num_classes)
         | 
| 227 | 
            +
                    self.per_class_accuracies = MulticlassAccuracy(
         | 
| 228 | 
            +
                        num_classes=num_classes, average=None)
         | 
| 229 | 
            +
                    self.kappa = MulticlassCohenKappa(num_classes)
         | 
| 230 | 
            +
                    self.split = split
         | 
| 231 | 
            +
                    self.log_fn = log_fn
         | 
| 232 | 
            +
                
         | 
| 233 | 
            +
                def update(self,
         | 
| 234 | 
            +
                           loss: torch.Tensor,
         | 
| 235 | 
            +
                           preds: torch.Tensor,
         | 
| 236 | 
            +
                           labels: torch.Tensor) -> None:
         | 
| 237 | 
            +
                    self.loss.update(loss)
         | 
| 238 | 
            +
                    self.accuracy.update(preds, labels)
         | 
| 239 | 
            +
                    self.per_class_accuracies.update(preds, labels)
         | 
| 240 | 
            +
                    self.kappa.update(preds, labels)
         | 
| 241 | 
            +
             | 
| 242 | 
            +
                def log(self) -> None:
         | 
| 243 | 
            +
                    loss = self.loss.compute()
         | 
| 244 | 
            +
                    accuracy = self.accuracy.compute()
         | 
| 245 | 
            +
                    accuracies = self.per_class_accuracies.compute()
         | 
| 246 | 
            +
                    kappa = self.kappa.compute()
         | 
| 247 | 
            +
                    mean_accuracy = torch.nanmean(accuracies)
         | 
| 248 | 
            +
                    self.log_fn(f"{self.split}/loss", loss, sync_dist=True)
         | 
| 249 | 
            +
                    self.log_fn(f"{self.split}/accuracy", accuracy, sync_dist=True)
         | 
| 250 | 
            +
                    self.log_fn(f"{self.split}/mean_accuracy", mean_accuracy, sync_dist=True)
         | 
| 251 | 
            +
                    for i_class, acc in enumerate(accuracies):
         | 
| 252 | 
            +
                        name = self.labelmap[i_class]
         | 
| 253 | 
            +
                        self.log_fn(f"{self.split}/acc/{i_class} {name}", acc, sync_dist=True)
         | 
| 254 | 
            +
                    self.log_fn(f"{self.split}/kappa", kappa, sync_dist=True)
         | 
| 255 | 
            +
             | 
| 256 | 
            +
                def to(self, device) -> 'Metrics':
         | 
| 257 | 
            +
                    self.loss.to(device) # BUG HERE? should I assign it back?
         | 
| 258 | 
            +
                    self.accuracy.to(device)
         | 
| 259 | 
            +
                    self.per_class_accuracies.to(device)
         | 
| 260 | 
            +
                    self.kappa.to(device)
         | 
| 261 | 
            +
                    return self
         | 
| 262 | 
            +
             | 
| 263 | 
            +
             | 
| 264 | 
            +
            def worker_init_fn(worker_id):
         | 
| 265 | 
            +
                state = np.random.get_state()
         | 
| 266 | 
            +
                assert isinstance(state, tuple)
         | 
| 267 | 
            +
                assert isinstance(state[1], np.ndarray)
         | 
| 268 | 
            +
                seed_arr = state[1]
         | 
| 269 | 
            +
                seed_np = seed_arr[0] + worker_id
         | 
| 270 | 
            +
                np.random.seed(seed_np)
         | 
| 271 | 
            +
                seed_pt = seed_np + 1111
         | 
| 272 | 
            +
                torch.manual_seed(seed_pt)
         | 
| 273 | 
            +
                print(f"Setting numpy seed to {seed_np} and pytorch seed to {seed_pt} in worker {worker_id}")
         | 
| 274 | 
            +
             | 
| 275 | 
            +
             | 
| 276 | 
            +
            class ViTLightningModule(L.LightningModule):
         | 
| 277 | 
            +
                def __init__(self, debug: bool) -> None:
         | 
| 278 | 
            +
                    super().__init__()
         | 
| 279 | 
            +
             | 
| 280 | 
            +
                    self.save_hyperparameters()
         | 
| 281 | 
            +
             | 
| 282 | 
            +
                    np.random.seed(53)
         | 
| 283 | 
            +
             | 
| 284 | 
            +
                    # pretrained_name = 'google/vit-base-patch16-224-in21k'
         | 
| 285 | 
            +
                    # pretrained_name = 'google/vit-base-patch16-384-in21k'
         | 
| 286 | 
            +
             | 
| 287 | 
            +
                    # pretrained_name = "microsoft/resnet-50"
         | 
| 288 | 
            +
                    pretrained_name = "microsoft/resnet-34"
         | 
| 289 | 
            +
             | 
| 290 | 
            +
                    # processor = ViTImageProcessor.from_pretrained(pretrained_name)
         | 
| 291 | 
            +
                    processor = AutoImageProcessor.from_pretrained(pretrained_name)
         | 
| 292 | 
            +
             | 
| 293 | 
            +
                    image_mean = processor.image_mean # type: ignore
         | 
| 294 | 
            +
                    image_std = processor.image_std # type: ignore
         | 
| 295 | 
            +
                    # size = processor.size["height"] # type: ignore
         | 
| 296 | 
            +
                    # size = processor.size["shortest_edge"] # type: ignore
         | 
| 297 | 
            +
                    size = 896 # 448
         | 
| 298 | 
            +
             | 
| 299 | 
            +
                    normalize = Normalize(mean=image_mean, std=image_std)
         | 
| 300 | 
            +
                    train_transforms = Compose(
         | 
| 301 | 
            +
                        [
         | 
| 302 | 
            +
                            # RandomRotation((-180, 180)),
         | 
| 303 | 
            +
                            RandomAffine((-180, 180), shear=10),
         | 
| 304 | 
            +
                            RandomResizedCrop(size, scale=(0.5, 1.0)),
         | 
| 305 | 
            +
                            RandomHorizontalFlip(),
         | 
| 306 | 
            +
                            ToTensor(),
         | 
| 307 | 
            +
                            normalize,
         | 
| 308 | 
            +
                        ]
         | 
| 309 | 
            +
                    )
         | 
| 310 | 
            +
                    val_transforms = Compose(
         | 
| 311 | 
            +
                        [
         | 
| 312 | 
            +
                            Resize(size),
         | 
| 313 | 
            +
                            CenterCrop(size),
         | 
| 314 | 
            +
                            ToTensor(),
         | 
| 315 | 
            +
                            normalize,
         | 
| 316 | 
            +
                        ]
         | 
| 317 | 
            +
                    )
         | 
| 318 | 
            +
             | 
| 319 | 
            +
                    self.dataset = RetinopathyDataset("retinopathy_data")
         | 
| 320 | 
            +
             | 
| 321 | 
            +
                    # print_data_stats(self.dataset, "all_data")
         | 
| 322 | 
            +
             | 
| 323 | 
            +
                    train_data, val_data = Split.make_splits(
         | 
| 324 | 
            +
                        self.dataset,
         | 
| 325 | 
            +
                        train_transforms=(train_transforms, torch.tensor),
         | 
| 326 | 
            +
                        val_transforms=(val_transforms, torch.tensor),
         | 
| 327 | 
            +
                        train_fraction=0.9,
         | 
| 328 | 
            +
                        stratify_train=True,
         | 
| 329 | 
            +
                        stratify_val=True,
         | 
| 330 | 
            +
                        )
         | 
| 331 | 
            +
             | 
| 332 | 
            +
                    assert len(set(train_data.indices).intersection(set(val_data.indices))) == 0
         | 
| 333 | 
            +
             | 
| 334 | 
            +
                    label2id = {label: id for id, label in self.dataset.label_map.items()}
         | 
| 335 | 
            +
             | 
| 336 | 
            +
                    num_classes = len(self.dataset.label_map)
         | 
| 337 | 
            +
                    labelmap = self.dataset.label_map
         | 
| 338 | 
            +
                    assert len(labelmap) == num_classes
         | 
| 339 | 
            +
                    assert set(labelmap.keys()) == set(range(num_classes))
         | 
| 340 | 
            +
             | 
| 341 | 
            +
                    train_batch_size = 4 if debug else 20
         | 
| 342 | 
            +
                    val_batch_size = 4 if debug else 20
         | 
| 343 | 
            +
             | 
| 344 | 
            +
                    num_gpus = torch.cuda.device_count()
         | 
| 345 | 
            +
                    print(f"{num_gpus=}")
         | 
| 346 | 
            +
             | 
| 347 | 
            +
                    num_cores = torch.get_num_threads()
         | 
| 348 | 
            +
                    print(f"{num_cores=}")
         | 
| 349 | 
            +
             | 
| 350 | 
            +
                    num_threads_per_gpu = max(1, int(math.ceil(num_cores / num_gpus))) \
         | 
| 351 | 
            +
                        if num_gpus > 0 else 1
         | 
| 352 | 
            +
             | 
| 353 | 
            +
                    num_workers = 1 if debug else num_threads_per_gpu
         | 
| 354 | 
            +
                    print(f"{num_workers=}")
         | 
| 355 | 
            +
             | 
| 356 | 
            +
                    self._train_dataloader = DataLoader(
         | 
| 357 | 
            +
                        train_data,
         | 
| 358 | 
            +
                        shuffle=True,
         | 
| 359 | 
            +
                        num_workers=num_workers,
         | 
| 360 | 
            +
                        persistent_workers=num_workers > 0,
         | 
| 361 | 
            +
                        pin_memory=True,
         | 
| 362 | 
            +
                        batch_size=train_batch_size,
         | 
| 363 | 
            +
                        worker_init_fn=worker_init_fn,
         | 
| 364 | 
            +
                        )
         | 
| 365 | 
            +
                    self._val_dataloader = DataLoader(
         | 
| 366 | 
            +
                        val_data,
         | 
| 367 | 
            +
                        shuffle=False,
         | 
| 368 | 
            +
                        num_workers=num_workers,
         | 
| 369 | 
            +
                        persistent_workers=num_workers > 0,
         | 
| 370 | 
            +
                        pin_memory=True,
         | 
| 371 | 
            +
                        batch_size=val_batch_size,
         | 
| 372 | 
            +
                        )
         | 
| 373 | 
            +
             | 
| 374 | 
            +
                    # print_data_stats(self._val_dataloader, "val")
         | 
| 375 | 
            +
                    # print_data_stats(self._train_dataloader, "train")
         | 
| 376 | 
            +
             | 
| 377 | 
            +
                    img_batch, label_batch = next(iter(self._train_dataloader))
         | 
| 378 | 
            +
                    assert isinstance(img_batch, torch.Tensor)
         | 
| 379 | 
            +
                    assert isinstance(label_batch, torch.Tensor)
         | 
| 380 | 
            +
                    print(f"{img_batch.shape=} {label_batch.shape=}")
         | 
| 381 | 
            +
                    
         | 
| 382 | 
            +
                    assert img_batch.shape == (train_batch_size, 3, size, size)
         | 
| 383 | 
            +
                    assert label_batch.shape == (train_batch_size,)
         | 
| 384 | 
            +
                    
         | 
| 385 | 
            +
                    self.example_input_array = torch.randn_like(img_batch)
         | 
| 386 | 
            +
             | 
| 387 | 
            +
                    # self._model = ViTForImageClassification.from_pretrained(
         | 
| 388 | 
            +
                    #     pretrained_name,
         | 
| 389 | 
            +
                    #     num_labels=len(self.dataset.label_map),
         | 
| 390 | 
            +
                    #     id2label=self.dataset.label_map,
         | 
| 391 | 
            +
                    #     label2id=label2id)
         | 
| 392 | 
            +
             | 
| 393 | 
            +
                    self._model = ResNetForImageClassification.from_pretrained(
         | 
| 394 | 
            +
                        pretrained_name,
         | 
| 395 | 
            +
                        num_labels=len(self.dataset.label_map),
         | 
| 396 | 
            +
                        id2label=self.dataset.label_map,
         | 
| 397 | 
            +
                        label2id=label2id,
         | 
| 398 | 
            +
                        ignore_mismatched_sizes=True)
         | 
| 399 | 
            +
             | 
| 400 | 
            +
                    assert isinstance(self._model, nn.Module)
         | 
| 401 | 
            +
             | 
| 402 | 
            +
                    self.train_metrics: Optional[Metrics] = None
         | 
| 403 | 
            +
                    self.val_metrics: Optional[Metrics] = None
         | 
| 404 | 
            +
             | 
| 405 | 
            +
                @property
         | 
| 406 | 
            +
                def num_classes(self):
         | 
| 407 | 
            +
                    return len(self.dataset.label_map)
         | 
| 408 | 
            +
                
         | 
| 409 | 
            +
                @property
         | 
| 410 | 
            +
                def labelmap(self):
         | 
| 411 | 
            +
                    return self.dataset.label_map
         | 
| 412 | 
            +
             | 
| 413 | 
            +
                def forward(self, img_batch):
         | 
| 414 | 
            +
                    outputs = self._model(img_batch) # type: ignore
         | 
| 415 | 
            +
                    return outputs.logits
         | 
| 416 | 
            +
                    
         | 
| 417 | 
            +
                def common_step(self, batch, batch_idx):
         | 
| 418 | 
            +
                    img_batch, label_batch = batch
         | 
| 419 | 
            +
             | 
| 420 | 
            +
                    logits = self(img_batch)
         | 
| 421 | 
            +
             | 
| 422 | 
            +
                    criterion = nn.CrossEntropyLoss()
         | 
| 423 | 
            +
                    loss = criterion(logits, label_batch)
         | 
| 424 | 
            +
                    preds_batch = logits.argmax(-1)
         | 
| 425 | 
            +
             | 
| 426 | 
            +
                    return loss, preds_batch, label_batch
         | 
| 427 | 
            +
             | 
| 428 | 
            +
                def on_train_epoch_start(self) -> None:
         | 
| 429 | 
            +
                    self.train_metrics = Metrics(
         | 
| 430 | 
            +
                        self.num_classes,
         | 
| 431 | 
            +
                        self.labelmap,
         | 
| 432 | 
            +
                        "train",
         | 
| 433 | 
            +
                        self.log).to(self.device)
         | 
| 434 | 
            +
             | 
| 435 | 
            +
                def training_step(self, batch, batch_idx):
         | 
| 436 | 
            +
                    loss, preds, labels = self.common_step(batch, batch_idx)
         | 
| 437 | 
            +
                    assert self.train_metrics is not None
         | 
| 438 | 
            +
                    self.train_metrics.update(loss, preds, labels)
         | 
| 439 | 
            +
             | 
| 440 | 
            +
                    if False and batch_idx == 0:
         | 
| 441 | 
            +
                        self._dump_train_images()
         | 
| 442 | 
            +
             | 
| 443 | 
            +
                    return loss
         | 
| 444 | 
            +
             | 
| 445 | 
            +
                def _dump_train_images(self) -> None:
         | 
| 446 | 
            +
                    img_batch, label_batch = next(iter(self._train_dataloader))
         | 
| 447 | 
            +
                    for i_img, (img, label) in enumerate(zip(img_batch, label_batch)):
         | 
| 448 | 
            +
                        img_np = img.cpu().numpy()
         | 
| 449 | 
            +
                        denorm_np = (img_np - img_np.min()) / (img_np.max() - img_np.min())
         | 
| 450 | 
            +
                        img_uint8 = (255 * denorm_np).astype(np.uint8)
         | 
| 451 | 
            +
                        pil_img = Image.fromarray(np.transpose(img_uint8, (1, 2, 0)))
         | 
| 452 | 
            +
                        if self.logger is not None and self.logger.log_dir is not None:
         | 
| 453 | 
            +
                            assert isinstance(self.logger.log_dir, str)
         | 
| 454 | 
            +
                            os.makedirs(self.logger.log_dir, exist_ok=True)
         | 
| 455 | 
            +
                            path = os.path.join(self.logger.log_dir,
         | 
| 456 | 
            +
                                                f"img_{i_img:02d}_{label.item()}.png")
         | 
| 457 | 
            +
                            pil_img.save(path)
         | 
| 458 | 
            +
             | 
| 459 | 
            +
                def on_train_epoch_end(self) -> None:
         | 
| 460 | 
            +
                    assert self.train_metrics is not None
         | 
| 461 | 
            +
                    self.train_metrics.log()
         | 
| 462 | 
            +
                    assert self.logger is not None
         | 
| 463 | 
            +
                    if self.logger.log_dir is not None:
         | 
| 464 | 
            +
                        path = os.path.join(self.logger.log_dir, "inference")
         | 
| 465 | 
            +
                        self.save_checkpoint_dk(path)
         | 
| 466 | 
            +
                
         | 
| 467 | 
            +
                def save_checkpoint_dk(self, dirpath: str) -> None:
         | 
| 468 | 
            +
                    if self.global_rank == 0:
         | 
| 469 | 
            +
                        self._model.save_pretrained(dirpath)
         | 
| 470 | 
            +
             | 
| 471 | 
            +
                def validation_step(self, batch, batch_idx):
         | 
| 472 | 
            +
                    loss, preds, labels = self.common_step(batch, batch_idx)
         | 
| 473 | 
            +
                    assert self.val_metrics is not None
         | 
| 474 | 
            +
                    self.val_metrics.update(loss, preds, labels)
         | 
| 475 | 
            +
                    return loss
         | 
| 476 | 
            +
             | 
| 477 | 
            +
                def on_validation_epoch_start(self) -> None:
         | 
| 478 | 
            +
                    self.val_metrics = Metrics(
         | 
| 479 | 
            +
                        self.num_classes,
         | 
| 480 | 
            +
                        self.labelmap,
         | 
| 481 | 
            +
                        "val",
         | 
| 482 | 
            +
                        self.log).to(self.device)
         | 
| 483 | 
            +
                
         | 
| 484 | 
            +
                def on_validation_epoch_end(self) -> None:
         | 
| 485 | 
            +
                    assert self.val_metrics is not None
         | 
| 486 | 
            +
                    self.val_metrics.log()
         | 
| 487 | 
            +
             | 
| 488 | 
            +
                def configure_optimizers(self):
         | 
| 489 | 
            +
                    # No WD is the same as 1e-3 and better than 1e-2
         | 
| 490 | 
            +
                    # LR 1e-3 is worse than 1e-4 (without LR scheduler)
         | 
| 491 | 
            +
                    return AdamW(self.parameters(),
         | 
| 492 | 
            +
                                 lr=1e-4,
         | 
| 493 | 
            +
                                 )
         | 
| 494 | 
            +
             | 
| 495 | 
            +
             | 
| 496 | 
            +
            def main():
         | 
| 497 | 
            +
             | 
| 498 | 
            +
                parser = ArgumentParser(description='KAUST-SDAIA Diabetic Retinopathy')
         | 
| 499 | 
            +
                parser.add_argument('--tag', action='store', type=str,
         | 
| 500 | 
            +
                                    help='Extra suffix to put on the artefact dir name')
         | 
| 501 | 
            +
                parser.add_argument('--debug', action='store_true')
         | 
| 502 | 
            +
                parser.add_argument('--convert-checkpoint', action='store', type=str,
         | 
| 503 | 
            +
                                    help='Convert a checkpoint from training to pickle-independent '
         | 
| 504 | 
            +
                                         'predictor-compatible directory')
         | 
| 505 | 
            +
             | 
| 506 | 
            +
                args = parser.parse_args()
         | 
| 507 | 
            +
             | 
| 508 | 
            +
             | 
| 509 | 
            +
                torch.set_float32_matmul_precision('high') # for V100/A100
         | 
| 510 | 
            +
             | 
| 511 | 
            +
                if args.convert_checkpoint is not None:
         | 
| 512 | 
            +
             | 
| 513 | 
            +
                    print("Converting checkpoint", args.convert_checkpoint)
         | 
| 514 | 
            +
             | 
| 515 | 
            +
                    checkpoint = torch.load(args.convert_checkpoint, map_location="cpu")
         | 
| 516 | 
            +
                    print(list(checkpoint.keys()))
         | 
| 517 | 
            +
             | 
| 518 | 
            +
                    model = ViTLightningModule.load_from_checkpoint(
         | 
| 519 | 
            +
                        args.convert_checkpoint,
         | 
| 520 | 
            +
                        map_location="cpu",
         | 
| 521 | 
            +
                        hparams_file="tmp_ckpt_deleteme.yaml")
         | 
| 522 | 
            +
             | 
| 523 | 
            +
                    model.save_checkpoint_dk("tmp_checkp_path_deleteme")
         | 
| 524 | 
            +
             | 
| 525 | 
            +
                    print("Saved checkpoint. Done.")
         | 
| 526 | 
            +
             | 
| 527 | 
            +
                else:
         | 
| 528 | 
            +
             | 
| 529 | 
            +
                    print("Start training")
         | 
| 530 | 
            +
             | 
| 531 | 
            +
                    fast_dev_run = True if args.debug == True else False
         | 
| 532 | 
            +
             | 
| 533 | 
            +
                    model = ViTLightningModule(fast_dev_run)
         | 
| 534 | 
            +
             | 
| 535 | 
            +
                    datetime_str = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
         | 
| 536 | 
            +
                    art_dir_name = (f"{datetime_str}" +
         | 
| 537 | 
            +
                                    (f"_{args.tag}" if args.tag is not None else ""))
         | 
| 538 | 
            +
                    logger = TensorBoardLogger(save_dir=".", name="lightning_logs", version=art_dir_name)
         | 
| 539 | 
            +
             | 
| 540 | 
            +
                    trainer = Trainer(
         | 
| 541 | 
            +
                        logger=logger,
         | 
| 542 | 
            +
                        benchmark=True,
         | 
| 543 | 
            +
                        devices="auto",
         | 
| 544 | 
            +
                        accelerator="auto",
         | 
| 545 | 
            +
                        max_epochs=-1,
         | 
| 546 | 
            +
                        callbacks=[
         | 
| 547 | 
            +
                            ModelSummary(max_depth=-1),
         | 
| 548 | 
            +
                            ],
         | 
| 549 | 
            +
                        fast_dev_run=fast_dev_run,
         | 
| 550 | 
            +
                        log_every_n_steps=10,
         | 
| 551 | 
            +
                        )
         | 
| 552 | 
            +
             | 
| 553 | 
            +
                    trainer.fit(
         | 
| 554 | 
            +
                        model,
         | 
| 555 | 
            +
                        train_dataloaders=model._train_dataloader,
         | 
| 556 | 
            +
                        val_dataloaders=model._val_dataloader,
         | 
| 557 | 
            +
                        )
         | 
| 558 | 
            +
             | 
| 559 | 
            +
                    print("Training done")
         | 
| 560 | 
            +
             | 
| 561 | 
            +
             | 
| 562 | 
            +
            if __name__ == "__main__":
         | 
| 563 | 
            +
                main()
         | 
    	
        train_a100_x1.sh
    ADDED
    
    | @@ -0,0 +1,27 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            #!/bin/bash
         | 
| 2 | 
            +
            sbatch <<EOT
         | 
| 3 | 
            +
            #!/bin/bash
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            #SBATCH -N 1
         | 
| 6 | 
            +
            #SBATCH -J SDAIA_DR
         | 
| 7 | 
            +
            #SBATCH -o slurm_logs/output.%J.out
         | 
| 8 | 
            +
            #SBATCH -e slurm_logs/output.%J.err
         | 
| 9 | 
            +
            #SBATCH --mail-user=${USER}@kaust.edu.sa
         | 
| 10 | 
            +
            #SBATCH --mail-type=END,FAIL
         | 
| 11 | 
            +
            #SBATCH --time=24:00:00
         | 
| 12 | 
            +
            #SBATCH --mem=100G
         | 
| 13 | 
            +
            #SBATCH --ntasks=1
         | 
| 14 | 
            +
            #SBATCH --gres=gpu:a100:1
         | 
| 15 | 
            +
            #SBATCH --cpus-per-task=16
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            module purge
         | 
| 18 | 
            +
            source activate retinopathy
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            echo Running four user "${USER}"
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            . ./tag.sh
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            PYTHONPATH=. python train.py --tag=\${SLURM_JOB_ID}_A100_x1_\${TAG}
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            exit 0
         | 
| 27 | 
            +
            EOT
         | 
    	
        train_a100_x4.sh
    ADDED
    
    | @@ -0,0 +1,27 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            #!/bin/bash
         | 
| 2 | 
            +
            sbatch <<EOT
         | 
| 3 | 
            +
            #!/bin/bash
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            #SBATCH -N 1
         | 
| 6 | 
            +
            #SBATCH -J SDAIA_DR
         | 
| 7 | 
            +
            #SBATCH -o slurm_logs/output.%J.out
         | 
| 8 | 
            +
            #SBATCH -e slurm_logs/output.%J.err
         | 
| 9 | 
            +
            #SBATCH --mail-user=${USER}@kaust.edu.sa
         | 
| 10 | 
            +
            #SBATCH --mail-type=END,FAIL
         | 
| 11 | 
            +
            #SBATCH --time=24:00:00
         | 
| 12 | 
            +
            #SBATCH --mem=200G
         | 
| 13 | 
            +
            #SBATCH --ntasks=1
         | 
| 14 | 
            +
            #SBATCH --gres=gpu:a100:4
         | 
| 15 | 
            +
            #SBATCH --cpus-per-task=64
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            module purge
         | 
| 18 | 
            +
            source activate retinopathy
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            echo Running four user "${USER}"
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            . ./tag.sh
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            PYTHONPATH=. python train.py --tag=\${SLURM_JOB_ID}_A100_x4_\${TAG}
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            exit 0
         | 
| 27 | 
            +
            EOT
         | 
    	
        train_v100_x1.sh
    ADDED
    
    | @@ -0,0 +1,27 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            #!/bin/bash
         | 
| 2 | 
            +
            sbatch <<EOT
         | 
| 3 | 
            +
            #!/bin/bash
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            #SBATCH -N 1
         | 
| 6 | 
            +
            #SBATCH -J SDAIA_DR
         | 
| 7 | 
            +
            #SBATCH -o slurm_logs/output.%J.out
         | 
| 8 | 
            +
            #SBATCH -e slurm_logs/output.%J.err
         | 
| 9 | 
            +
            #SBATCH --mail-user=${USER}@kaust.edu.sa
         | 
| 10 | 
            +
            #SBATCH --mail-type=END,FAIL
         | 
| 11 | 
            +
            #SBATCH --time=24:00:00
         | 
| 12 | 
            +
            #SBATCH --mem=100G
         | 
| 13 | 
            +
            #SBATCH --ntasks=1
         | 
| 14 | 
            +
            #SBATCH --gres=gpu:v100:1
         | 
| 15 | 
            +
            #SBATCH --cpus-per-task=10
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            module purge
         | 
| 18 | 
            +
            source activate retinopathy
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            echo Running four user "${USER}"
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            . ./tag.sh
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            PYTHONPATH=. python train.py --tag=\${SLURM_JOB_ID}_V100_x1_\${TAG}
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            exit 0
         | 
| 27 | 
            +
            EOT
         | 
    	
        train_v100_x4.sh
    ADDED
    
    | @@ -0,0 +1,27 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            #!/bin/bash
         | 
| 2 | 
            +
            sbatch <<EOT
         | 
| 3 | 
            +
            #!/bin/bash
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            #SBATCH -N 1
         | 
| 6 | 
            +
            #SBATCH -J SDAIA_DR
         | 
| 7 | 
            +
            #SBATCH -o slurm_logs/output.%J.out
         | 
| 8 | 
            +
            #SBATCH -e slurm_logs/output.%J.err
         | 
| 9 | 
            +
            #SBATCH --mail-user=${USER}@kaust.edu.sa
         | 
| 10 | 
            +
            #SBATCH --mail-type=END,FAIL
         | 
| 11 | 
            +
            #SBATCH --time=24:00:00
         | 
| 12 | 
            +
            #SBATCH --mem=200G
         | 
| 13 | 
            +
            #SBATCH --ntasks=1
         | 
| 14 | 
            +
            #SBATCH --gres=gpu:v100:4
         | 
| 15 | 
            +
            #SBATCH --cpus-per-task=40
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            module purge
         | 
| 18 | 
            +
            source activate retinopathy
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            echo Running four user "${USER}"
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            . ./tag.sh
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            PYTHONPATH=. python train.py --tag=\${SLURM_JOB_ID}_V100_x4_\${TAG}
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            exit 0
         | 
| 27 | 
            +
            EOT
         | 

