Spaces:
Runtime error
Runtime error
| # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Liu Yue) | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import os | |
| import threading | |
| import torch | |
| os.system('nvidia-smi') | |
| # os.system('apt update -y && apt-get install -y apt-utils && apt install -y unzip') | |
| print(torch.backends.cudnn.version()) | |
| import importlib | |
| import sys | |
| dynamic_modules_file1 = '/home/user/.pyenv/versions/3.10.16/lib/python3.10/site-packages/diffusers/utils/dynamic_modules_utils.py' | |
| dynamic_modules_file2 = '/usr/local/lib/python3.10/site-packages/diffusers/utils/dynamic_modules_utils.py' | |
| def modify_dynamic_modules_file(dynamic_modules_file): | |
| if os.path.exists(dynamic_modules_file): | |
| with open(dynamic_modules_file, 'r') as file: | |
| lines = file.readlines() | |
| with open(dynamic_modules_file, 'w') as file: | |
| for line in lines: | |
| if "from huggingface_hub import cached_download" in line: | |
| file.write("from huggingface_hub import hf_hub_download, model_info\n") | |
| else: | |
| file.write(line) | |
| modify_dynamic_modules_file(dynamic_modules_file1) | |
| modify_dynamic_modules_file(dynamic_modules_file2) | |
| import sys | |
| import argparse | |
| import gradio as gr | |
| import numpy as np | |
| import torchaudio | |
| import random | |
| import librosa | |
| import spaces | |
| from funasr import AutoModel | |
| from funasr.utils.postprocess_utils import rich_transcription_postprocess | |
| ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) | |
| sys.path.append('{}/third_party/Matcha-TTS'.format(ROOT_DIR)) | |
| from huggingface_hub import snapshot_download | |
| snapshot_download('FunAudioLLM/CosyVoice2-0.5B', local_dir='pretrained_models/CosyVoice2-0.5B') | |
| snapshot_download('kemuriririn/CosyVoice-ttsfrd', local_dir='pretrained_models/CosyVoice-ttsfrd') | |
| snapshot_download('FunAudioLLM/SenseVoiceSmall', local_dir='pretrained_models/SenseVoiceSmall') | |
| os.system('cd pretrained_models/CosyVoice-ttsfrd/ && pip install ttsfrd_dependency-0.1-py3-none-any.whl && pip install ttsfrd-0.4.2-cp310-cp310-linux_x86_64.whl && unzip resource.zip -d .') | |
| from cosyvoice.cli.cosyvoice import CosyVoice2 | |
| from cosyvoice.utils.file_utils import load_wav, logging | |
| from cosyvoice.utils.common import set_all_random_seed | |
| inference_mode_list = ['3s Voice Clone'] | |
| instruct_dict = {'3s Voice Clone': '1. Upload prompt wav file (or record from mic), no longer than 30s, wav file will be used if provided at the same time\n2. Input prompt transcription\n3. click \'Speech Synthesis\' button'} | |
| stream_mode_list = [('No', False), ('Yes', True)] | |
| max_val = 0.8 | |
| cosyvoice_instance = None | |
| asr_model = None | |
| cosyvoice_lock = threading.Lock() | |
| def get_cosyvoice(): | |
| global cosyvoice_instance, model_dir | |
| load_jit = True if os.environ.get('jit') == '1' else False | |
| load_onnx = True if os.environ.get('onnx') == '1' else False | |
| load_trt = True if os.environ.get('trt') == '1' else False | |
| with cosyvoice_lock: | |
| if cosyvoice_instance is not None: | |
| return cosyvoice_instance | |
| else: | |
| logging.info('cosyvoice args load_jit {} load_onnx {} load_trt {}'.format(load_jit, load_onnx, load_trt)) | |
| cosyvoice_instance= CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=load_jit, load_onnx=load_onnx, | |
| load_trt=load_trt) | |
| return cosyvoice_instance | |
| def infer_zeroshot(tts_text, prompt_text, prompt_speech_16k, stream, speed): | |
| cosyvoice = get_cosyvoice() | |
| if cosyvoice.frontend.instruct is True: | |
| logging.warning('CosyVoice2-0.5B does not support zero-shot inference, please use CosyVoice-300M or CosyVoice-300M-Instruct.') | |
| return | |
| for i in cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k, stream=stream, speed=speed): | |
| yield i | |
| def get_asr(): | |
| global asr_model | |
| if asr_model is not None: | |
| return asr_model | |
| else: | |
| logging.info('asr model load') | |
| model_dir = "pretrained_models/SenseVoiceSmall" | |
| asr_model = AutoModel( | |
| model=model_dir, | |
| disable_update=True, | |
| log_level='DEBUG', | |
| device="cuda:0") | |
| return asr_model | |
| def generate_seed(): | |
| seed = random.randint(1, 100000000) | |
| return { | |
| "__type__": "update", | |
| "value": seed | |
| } | |
| def postprocess(speech, top_db=60, hop_length=220, win_length=440): | |
| speech, _ = librosa.effects.trim( | |
| speech, top_db=top_db, | |
| frame_length=win_length, | |
| hop_length=hop_length | |
| ) | |
| if speech.abs().max() > max_val: | |
| speech = speech / speech.abs().max() * max_val | |
| speech = torch.concat([speech, torch.zeros(1, int(target_sr * 0.2))], dim=1) | |
| return speech | |
| def prompt_wav_recognition(prompt_wav): | |
| res = get_asr().generate(input=prompt_wav, | |
| language="auto", # "zn", "en", "yue", "ja", "ko", "nospeech" | |
| use_itn=True, | |
| ) | |
| text = res[0]["text"].split('|>')[-1] | |
| return text | |
| def generate_audio(tts_text, prompt_text, prompt_wav_upload, prompt_wav_record, seed, stream): | |
| speed = 1.0 | |
| if prompt_wav_upload is not None: | |
| prompt_wav = prompt_wav_upload | |
| elif prompt_wav_record is not None: | |
| prompt_wav = prompt_wav_record | |
| else: | |
| prompt_wav = None | |
| if prompt_text == '': | |
| gr.Warning('Empty prompt found, please check the prompt text.') | |
| yield (target_sr, default_data) | |
| return | |
| if prompt_wav is None: | |
| gr.Warning('Empty prompt found, please upload or record audio.') | |
| yield (target_sr, default_data) | |
| return | |
| info = torchaudio.info(prompt_wav) | |
| if info.num_frames / info.sample_rate > 10: | |
| gr.Warning('Please use prompt audio shorter than 10s.') | |
| yield (target_sr, default_data) | |
| return | |
| if torchaudio.info(prompt_wav).sample_rate < prompt_sr: | |
| gr.Warning('Prompt wav sample rate {}, lower than {}.'.format(torchaudio.info(prompt_wav).sample_rate, prompt_sr)) | |
| yield (target_sr, default_data) | |
| return | |
| prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr)) | |
| set_all_random_seed(seed) | |
| for i in infer_zeroshot(tts_text, prompt_text, prompt_speech_16k, stream=stream, speed=speed): | |
| yield (target_sr, i['tts_speech'].numpy().flatten()) | |
| def main(): | |
| with gr.Blocks() as demo: | |
| gr.Markdown("### 3s Voice Clone") | |
| gr.Markdown("#### Clone any voice with just 3 seconds of audio. Upload or record audio, input transcription, and click 'Speech Synthesis'.") | |
| tts_text = gr.Textbox(label="Text to synthesize", lines=1, value="CosyVoice is undergoing a comprehensive upgrade, providing more accurate, stable, faster, and better voice generation capabilities.") | |
| with gr.Row(): | |
| prompt_wav_upload = gr.Audio(sources='upload', type='filepath', label='Prompt wav file (sample rate >= 16kHz)') | |
| prompt_wav_record = gr.Audio(sources='microphone', type='filepath', label='Record prompt from your microphone') | |
| prompt_text = gr.Textbox(label="Prompt Transcription", lines=1, placeholder="Prompt transcription (auto ASR, you can correct the recognition results)", value='') | |
| with gr.Row(): | |
| stream = gr.Radio(choices=stream_mode_list, label='Streaming or not', value=stream_mode_list[0][1]) | |
| with gr.Column(scale=0.25): | |
| seed_button = gr.Button(value="\U0001F3B2") | |
| seed = gr.Number(value=0, label="Random Seed") | |
| generate_button = gr.Button("Speech Synthesis") | |
| audio_output = gr.Audio(label="Audio Output", autoplay=True, streaming=False) | |
| seed_button.click(generate_seed, inputs=[], outputs=seed) | |
| generate_button.click(generate_audio, | |
| inputs=[tts_text, prompt_text, prompt_wav_upload, prompt_wav_record, seed, stream], | |
| outputs=[audio_output]) | |
| prompt_wav_upload.change(fn=prompt_wav_recognition, inputs=[prompt_wav_upload], outputs=[prompt_text]) | |
| prompt_wav_record.change(fn=prompt_wav_recognition, inputs=[prompt_wav_record], outputs=[prompt_text]) | |
| demo.launch(max_threads=4) | |
| if __name__ == '__main__': | |
| # sft_spk = cosyvoice.list_avaliable_spks() | |
| prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000) | |
| for stream in [True, False]: | |
| for i, j in enumerate(infer_zeroshot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=stream)): | |
| continue | |
| prompt_sr, target_sr = 16000, 24000 | |
| default_data = np.zeros(target_sr) | |
| main() | |