import torch import gradio as gr import numpy as np import random from diffusers import ( StableDiffusionPipeline, StableDiffusionInstructPix2PixPipeline, StableVideoDiffusionPipeline, WanPipeline, ) from diffusers.utils import export_to_video, load_image # Force CPU mode device = "cpu" dtype = torch.float32 MAX_SEED = np.iinfo(np.int32).max # Global pipeline holders TXT2IMG_PIPE = None IMG2IMG_PIPE = None TXT2VID_PIPE = None IMG2VID_PIPE = None # Helper to load models def make_pipe(cls, model_id, **kwargs): pipe = cls.from_pretrained(model_id, torch_dtype=dtype, **kwargs) pipe.to(device) return pipe # Text → Image def generate_image_from_text(prompt, seed, randomize_seed): global TXT2IMG_PIPE if TXT2IMG_PIPE is None: TXT2IMG_PIPE = make_pipe(StableDiffusionPipeline, "stabilityai/stable-diffusion-2-1-base") if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.manual_seed(seed) image = TXT2IMG_PIPE(prompt=prompt, num_inference_steps=20, generator=generator).images[0] return image, seed # Image → Image def generate_image_from_image_and_prompt(image, prompt, seed, randomize_seed): global IMG2IMG_PIPE if IMG2IMG_PIPE is None: IMG2IMG_PIPE = make_pipe(StableDiffusionInstructPix2PixPipeline, "timbrooks/instruct-pix2pix") if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.manual_seed(seed) out = IMG2IMG_PIPE(prompt=prompt, image=image, num_inference_steps=8, generator=generator) return out.images[0], seed # Text → Video def generate_video_from_text(prompt, seed, randomize_seed): global TXT2VID_PIPE if TXT2VID_PIPE is None: TXT2VID_PIPE = make_pipe(WanPipeline, "Wan-AI/Wan2.1-T2V-1.3B-Diffusers") if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.manual_seed(seed) frames = TXT2VID_PIPE(prompt=prompt, num_frames=12, generator=generator).frames[0] return export_to_video(frames, "/tmp/wan_video.mp4", fps=8), seed # Image → Video def generate_video_from_image(image, seed, randomize_seed): global IMG2VID_PIPE if IMG2VID_PIPE is None: IMG2VID_PIPE = make_pipe( StableVideoDiffusionPipeline, "stabilityai/stable-video-diffusion-img2vid-xt" ) if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.manual_seed(seed) image = load_image(image).resize((512, 288)) frames = IMG2VID_PIPE(image=image, num_inference_steps=16, generator=generator).frames[0] return export_to_video(frames, "/tmp/svd_video.mp4", fps=8), seed # Gradio Interface with gr.Blocks() as demo: gr.Markdown("# 🧠 AI Playground – Text & Image → Image & Video") with gr.Tabs(): # Text → Image with gr.Tab("Text → Image"): prompt_txt = gr.Textbox(label="Prompt") btn_txt2img = gr.Button("Generate") result_img = gr.Image() seed_txt = gr.Slider(0, MAX_SEED, value=42, label="Seed") rand_txt = gr.Checkbox(label="Randomize seed", value=True) btn_txt2img.click( generate_image_from_text, inputs=[prompt_txt, seed_txt, rand_txt], outputs=[result_img, seed_txt] ) # Image → Image with gr.Tab("Image → Image"): image_in = gr.Image(label="Input Image") prompt_img = gr.Textbox(label="Edit Prompt") btn_img2img = gr.Button("Generate") result_img2 = gr.Image() seed_img = gr.Slider(0, MAX_SEED, value=123, label="Seed") rand_img = gr.Checkbox(label="Randomize seed", value=True) btn_img2img.click( generate_image_from_image_and_prompt, inputs=[image_in, prompt_img, seed_img, rand_img], outputs=[result_img2, seed_img] ) # Text → Video with gr.Tab("Text → Video"): prompt_vid = gr.Textbox(label="Prompt") btn_txt2vid = gr.Button("Generate") result_vid = gr.Video() seed_vid = gr.Slider(0, MAX_SEED, value=555, label="Seed") rand_vid = gr.Checkbox(label="Randomize seed", value=True) btn_txt2vid.click( generate_video_from_text, inputs=[prompt_vid, seed_vid, rand_vid], outputs=[result_vid, seed_vid] ) # Image → Video with gr.Tab("Image → Video"): image_vid = gr.Image(label="Input Image") btn_img2vid = gr.Button("Animate") result_vid2 = gr.Video() seed_vid2 = gr.Slider(0, MAX_SEED, value=999, label="Seed") rand_vid2 = gr.Checkbox(label="Randomize seed", value=True) btn_img2vid.click( generate_video_from_image, inputs=[image_vid, seed_vid2, rand_vid2], outputs=[result_vid2, seed_vid2] ) demo.queue() demo.launch(show_error=True)