Spaces:
Sleeping
Sleeping
Commit
·
e23e895
1
Parent(s):
c6db24f
first commit, working app
Browse files- .gitignore +59 -0
- README.md +95 -4
- app.py +299 -0
- pdf_qa/__init__.py +8 -0
- pdf_qa/pdf_processor.py +31 -0
- pdf_qa/product_classifier.py +178 -0
- pdf_qa/qa_engine.py +64 -0
- requirements.txt +10 -0
- test_simple.py +63 -0
.gitignore
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
*.so
|
| 6 |
+
.Python
|
| 7 |
+
build/
|
| 8 |
+
develop-eggs/
|
| 9 |
+
dist/
|
| 10 |
+
downloads/
|
| 11 |
+
eggs/
|
| 12 |
+
.eggs/
|
| 13 |
+
lib/
|
| 14 |
+
lib64/
|
| 15 |
+
parts/
|
| 16 |
+
sdist/
|
| 17 |
+
var/
|
| 18 |
+
wheels/
|
| 19 |
+
*.egg-info/
|
| 20 |
+
.installed.cfg
|
| 21 |
+
*.egg
|
| 22 |
+
MANIFEST
|
| 23 |
+
|
| 24 |
+
# Virtual environments
|
| 25 |
+
venv/
|
| 26 |
+
env/
|
| 27 |
+
ENV/
|
| 28 |
+
env.bak/
|
| 29 |
+
venv.bak/
|
| 30 |
+
|
| 31 |
+
# Environment variables
|
| 32 |
+
.env
|
| 33 |
+
.env.local
|
| 34 |
+
.env.development.local
|
| 35 |
+
.env.test.local
|
| 36 |
+
.env.production.local
|
| 37 |
+
|
| 38 |
+
# IDE
|
| 39 |
+
.vscode/
|
| 40 |
+
.idea/
|
| 41 |
+
*.swp
|
| 42 |
+
*.swo
|
| 43 |
+
*~
|
| 44 |
+
|
| 45 |
+
# OS
|
| 46 |
+
.DS_Store
|
| 47 |
+
.DS_Store?
|
| 48 |
+
._*
|
| 49 |
+
.Spotlight-V100
|
| 50 |
+
.Trashes
|
| 51 |
+
ehthumbs.db
|
| 52 |
+
Thumbs.db
|
| 53 |
+
|
| 54 |
+
# Logs
|
| 55 |
+
*.log
|
| 56 |
+
|
| 57 |
+
# Temporary files
|
| 58 |
+
*.tmp
|
| 59 |
+
*.temp
|
README.md
CHANGED
|
@@ -1,14 +1,105 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: green
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.44.1
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
-
short_description:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
---
|
| 13 |
|
| 14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Document Classification
|
| 3 |
+
emoji: 🏷️
|
| 4 |
colorFrom: green
|
| 5 |
+
colorTo: blue
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.44.1
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
+
short_description: Classify PDF documents into product categories using AI
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
# Document Classification App
|
| 15 |
+
|
| 16 |
+
A Gradio-based web application that classifies PDF documents into product categories using AI-powered analysis.
|
| 17 |
+
|
| 18 |
+
## Features
|
| 19 |
+
|
| 20 |
+
- 📄 **PDF Upload**: Upload any PDF document
|
| 21 |
+
- 🔍 **Text Extraction**: Automatically extract text from PDFs
|
| 22 |
+
- 🏷️ **AI-Powered Classification**: Classify documents into product categories
|
| 23 |
+
- 🎯 **Multiple Methods**: Choose between semantic similarity, keyword matching, or hybrid approach
|
| 24 |
+
- 📊 **Confidence Scores**: Get confidence scores for each classification
|
| 25 |
+
- ⚙️ **Customizable Products**: Define your own product categories and descriptions
|
| 26 |
+
|
| 27 |
+
## How to Use
|
| 28 |
+
|
| 29 |
+
1. **Upload PDF**: Click the upload button and select your PDF file
|
| 30 |
+
2. **Choose Method**: Select your preferred classification method (hybrid, semantic, or keyword)
|
| 31 |
+
3. **Define Products**: Use the default product definitions or customize your own in JSON format
|
| 32 |
+
4. **Classify**: Click "Classify Document" to analyze the PDF
|
| 33 |
+
5. **View Results**: See the top 3 product matches with confidence scores
|
| 34 |
+
|
| 35 |
+
## Setup
|
| 36 |
+
|
| 37 |
+
### For Hugging Face Spaces (Production)
|
| 38 |
+
|
| 39 |
+
1. Set your `OPENAI_API_KEY` in the Space settings:
|
| 40 |
+
- Go to your Space settings
|
| 41 |
+
- Add `OPENAI_API_KEY` as a secret
|
| 42 |
+
- Enter your OpenAI API key
|
| 43 |
+
|
| 44 |
+
### For Local Development
|
| 45 |
+
|
| 46 |
+
1. Clone this repository
|
| 47 |
+
2. Install dependencies: `pip install -r requirements.txt`
|
| 48 |
+
3. Optionally create a `.env` file in the project root with your API key:
|
| 49 |
+
```
|
| 50 |
+
OPENAI_API_KEY=your-api-key-here
|
| 51 |
+
```
|
| 52 |
+
Or set it as an environment variable: `export OPENAI_API_KEY="your-api-key"`
|
| 53 |
+
4. Run the app: `python app.py`
|
| 54 |
+
|
| 55 |
+
## Technical Details
|
| 56 |
+
|
| 57 |
+
- **Framework**: Gradio for the web interface
|
| 58 |
+
- **Embeddings**: OpenAI embeddings for semantic similarity
|
| 59 |
+
- **Vector Store**: LangChain InMemoryVectorStore for efficient similarity search
|
| 60 |
+
- **Classification Methods**: Semantic similarity, keyword matching, and hybrid approach
|
| 61 |
+
- **Text Processing**: PyPDF for PDF text extraction
|
| 62 |
+
- **Architecture**: Simple modular design with clean separation of concerns
|
| 63 |
+
|
| 64 |
+
## Project Structure
|
| 65 |
+
|
| 66 |
+
```
|
| 67 |
+
pdf2product/
|
| 68 |
+
├── app.py # Main Gradio application
|
| 69 |
+
├── requirements.txt # Python dependencies
|
| 70 |
+
├── .env # Environment variables (create this)
|
| 71 |
+
└── pdf_qa/ # Core Q&A package
|
| 72 |
+
├── __init__.py # Package initialization
|
| 73 |
+
├── pdf_processor.py # PDF text extraction and chunking
|
| 74 |
+
└── qa_engine.py # Question answering engine
|
| 75 |
+
```
|
| 76 |
+
|
| 77 |
+
## Architecture
|
| 78 |
+
|
| 79 |
+
Simple and clean architecture:
|
| 80 |
+
|
| 81 |
+
- **Separation of Concerns**: UI logic (Gradio) is separate from business logic
|
| 82 |
+
- **Modularity**: Two main components - PDF processing and Q&A
|
| 83 |
+
- **Simplicity**: Minimal, focused modules that do one thing well
|
| 84 |
+
|
| 85 |
+
## Example Product Categories
|
| 86 |
+
|
| 87 |
+
The app includes several example product configurations:
|
| 88 |
+
|
| 89 |
+
- **Invoice-Focused**: Invoice, Receipt, Quote/Estimate
|
| 90 |
+
- **Travel-Focused**: Flight Ticket, Hotel Reservation, Travel Insurance
|
| 91 |
+
- **Employment-Focused**: CV/Resume, Job Offer, Employment Contract
|
| 92 |
+
|
| 93 |
+
Users can also define their own custom product categories in JSON format.
|
| 94 |
+
|
| 95 |
+
## Limitations
|
| 96 |
+
|
| 97 |
+
- Currently supports one PDF at a time
|
| 98 |
+
- Requires OpenAI API key
|
| 99 |
+
- Best results with text-based PDFs (not scanned images)
|
| 100 |
+
- Processing time depends on document size
|
| 101 |
+
- Classification accuracy depends on document content quality
|
| 102 |
+
|
| 103 |
---
|
| 104 |
|
| 105 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import json
|
| 3 |
+
from pdf_qa.pdf_processor import PDFProcessor
|
| 4 |
+
from pdf_qa.product_classifier import ProductClassifier
|
| 5 |
+
|
| 6 |
+
# Load .env file only in development (optional)
|
| 7 |
+
try:
|
| 8 |
+
from dotenv import load_dotenv
|
| 9 |
+
|
| 10 |
+
load_dotenv()
|
| 11 |
+
except ImportError:
|
| 12 |
+
pass # dotenv not available in production
|
| 13 |
+
|
| 14 |
+
# Global instances
|
| 15 |
+
pdf_processor = PDFProcessor()
|
| 16 |
+
# Initialize classifier with empty products (will be set during classification)
|
| 17 |
+
classifier = None
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def classify_document(pdf_file, products_json, method):
|
| 21 |
+
"""Classify document into product categories"""
|
| 22 |
+
if not pdf_file:
|
| 23 |
+
return "Please upload a PDF file first.", ""
|
| 24 |
+
|
| 25 |
+
if not products_json.strip():
|
| 26 |
+
return "Please provide product definitions.", ""
|
| 27 |
+
|
| 28 |
+
try:
|
| 29 |
+
# Parse products JSON
|
| 30 |
+
products = json.loads(products_json)
|
| 31 |
+
|
| 32 |
+
# Process PDF
|
| 33 |
+
pages = pdf_processor.process_pdf(pdf_file)
|
| 34 |
+
|
| 35 |
+
# Create classifier with products
|
| 36 |
+
classifier = ProductClassifier(products)
|
| 37 |
+
|
| 38 |
+
# Classify document
|
| 39 |
+
results = classifier.classify_document(pages, products, method)
|
| 40 |
+
|
| 41 |
+
# Format results for Gradio Label component
|
| 42 |
+
formatted_results = {}
|
| 43 |
+
for product_id, score in results[:3]: # Top 3 results
|
| 44 |
+
product_name = products[product_id].get("name", product_id)
|
| 45 |
+
formatted_results[product_name] = score
|
| 46 |
+
|
| 47 |
+
# Get summary if using smart_semantic method
|
| 48 |
+
summary = ""
|
| 49 |
+
if method == "smart_semantic":
|
| 50 |
+
summary = classifier.get_summary(pages)
|
| 51 |
+
|
| 52 |
+
return formatted_results, summary
|
| 53 |
+
|
| 54 |
+
except json.JSONDecodeError:
|
| 55 |
+
return "Invalid JSON format for products.", ""
|
| 56 |
+
except Exception as e:
|
| 57 |
+
return str(e), ""
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
# Create Gradio interface
|
| 61 |
+
with gr.Blocks(title="Document Classification", theme=gr.themes.Soft()) as demo:
|
| 62 |
+
gr.Markdown("# 📄 Document Classification")
|
| 63 |
+
|
| 64 |
+
# Details section
|
| 65 |
+
with gr.Accordion("ℹ️ How it works", open=False):
|
| 66 |
+
gr.Markdown("""
|
| 67 |
+
**Document Classification System**
|
| 68 |
+
|
| 69 |
+
This AI-powered tool analyzes PDF documents and matches them to predefined product categories based on content similarity.
|
| 70 |
+
|
| 71 |
+
**Methods Available:**
|
| 72 |
+
- **Smart Semantic**: Uses LLM to summarize the document, then finds semantic matches (recommended)
|
| 73 |
+
- **Semantic**: Direct semantic similarity between document and product descriptions
|
| 74 |
+
- **Keyword**: Matches based on keyword presence in the document
|
| 75 |
+
- **Hybrid**: Combines semantic and keyword approaches (70% semantic, 30% keyword)
|
| 76 |
+
|
| 77 |
+
**How to use:**
|
| 78 |
+
1. Upload a PDF document
|
| 79 |
+
2. Define your product categories with descriptions and keywords (JSON format) or use the examples at the bottom of the page
|
| 80 |
+
3. Choose a classification method
|
| 81 |
+
4. Get top 3 matches with confidence scores
|
| 82 |
+
""")
|
| 83 |
+
|
| 84 |
+
with gr.Row():
|
| 85 |
+
with gr.Column(scale=1):
|
| 86 |
+
gr.Markdown("### Upload PDF")
|
| 87 |
+
pdf_input = gr.File(
|
| 88 |
+
label="Upload PDF", file_types=[".pdf"], type="filepath"
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
gr.Markdown("### Classification Method")
|
| 92 |
+
method_dropdown = gr.Dropdown(
|
| 93 |
+
choices=["hybrid", "smart_semantic", "semantic", "keyword"],
|
| 94 |
+
value="smart_semantic",
|
| 95 |
+
label="Select classification method",
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
classify_btn = gr.Button("Classify Document", variant="primary")
|
| 99 |
+
|
| 100 |
+
with gr.Column(scale=2):
|
| 101 |
+
gr.Markdown("### Product Definitions")
|
| 102 |
+
products_input = gr.Textbox(
|
| 103 |
+
label="Product definitions (JSON format)",
|
| 104 |
+
value="{}",
|
| 105 |
+
# lines=19,
|
| 106 |
+
placeholder="Enter product definitions in JSON format or use examples below...",
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
with gr.Row():
|
| 110 |
+
with gr.Column():
|
| 111 |
+
gr.Markdown("### Classification Results")
|
| 112 |
+
results_output = gr.Label(label="Top 3 matches with confidence scores")
|
| 113 |
+
|
| 114 |
+
with gr.Column():
|
| 115 |
+
gr.Markdown("### Document Summary")
|
| 116 |
+
summary_output = gr.Textbox(
|
| 117 |
+
label="LLM-generated summary (smart_semantic method only)",
|
| 118 |
+
lines=3,
|
| 119 |
+
interactive=False
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
with gr.Accordion("Examples", open=True):
|
| 123 |
+
gr.Markdown("""
|
| 124 |
+
Below are some example product definitions grouped by different categories.
|
| 125 |
+
- Invoice-focused products
|
| 126 |
+
- Travel-focused products
|
| 127 |
+
- Employment-focused products
|
| 128 |
+
|
| 129 |
+
### How to use examples:
|
| 130 |
+
1. Click on any example below.
|
| 131 |
+
2. Upload your PDF document
|
| 132 |
+
3. Choose your classification method
|
| 133 |
+
4. Click "Classify Document"
|
| 134 |
+
""")
|
| 135 |
+
|
| 136 |
+
# Example 1: Invoice-focused products
|
| 137 |
+
invoice_products = {
|
| 138 |
+
"invoice": {
|
| 139 |
+
"name": "Invoice",
|
| 140 |
+
"description": "A commercial document requesting payment for goods or services rendered. Contains billing information, itemized charges, tax amounts, payment terms, due dates, vendor details, and total amounts owed.",
|
| 141 |
+
"keywords": [
|
| 142 |
+
"invoice",
|
| 143 |
+
"bill",
|
| 144 |
+
"payment",
|
| 145 |
+
"amount",
|
| 146 |
+
"due",
|
| 147 |
+
"tax",
|
| 148 |
+
"total",
|
| 149 |
+
"vendor",
|
| 150 |
+
"customer",
|
| 151 |
+
"charges",
|
| 152 |
+
],
|
| 153 |
+
},
|
| 154 |
+
"receipt": {
|
| 155 |
+
"name": "Receipt",
|
| 156 |
+
"description": "A proof of payment document showing completed transaction details, payment confirmation, and purchase information.",
|
| 157 |
+
"keywords": [
|
| 158 |
+
"receipt",
|
| 159 |
+
"payment",
|
| 160 |
+
"transaction",
|
| 161 |
+
"purchase",
|
| 162 |
+
"paid",
|
| 163 |
+
"confirmation",
|
| 164 |
+
"total",
|
| 165 |
+
],
|
| 166 |
+
},
|
| 167 |
+
"quote": {
|
| 168 |
+
"name": "Quote/Estimate",
|
| 169 |
+
"description": "A preliminary pricing document providing cost estimates for goods or services before purchase.",
|
| 170 |
+
"keywords": [
|
| 171 |
+
"quote",
|
| 172 |
+
"estimate",
|
| 173 |
+
"pricing",
|
| 174 |
+
"cost",
|
| 175 |
+
"proposal",
|
| 176 |
+
"preliminary",
|
| 177 |
+
"before purchase",
|
| 178 |
+
],
|
| 179 |
+
},
|
| 180 |
+
}
|
| 181 |
+
|
| 182 |
+
# Example 2: Travel-focused products
|
| 183 |
+
travel_products = {
|
| 184 |
+
"flight_ticket": {
|
| 185 |
+
"name": "Flight Ticket",
|
| 186 |
+
"description": "Airline ticket or booking confirmation with passenger details, flight information, and travel itinerary.",
|
| 187 |
+
"keywords": [
|
| 188 |
+
"flight",
|
| 189 |
+
"airline",
|
| 190 |
+
"ticket",
|
| 191 |
+
"booking",
|
| 192 |
+
"passenger",
|
| 193 |
+
"itinerary",
|
| 194 |
+
"departure",
|
| 195 |
+
"arrival",
|
| 196 |
+
],
|
| 197 |
+
},
|
| 198 |
+
"hotel_reservation": {
|
| 199 |
+
"name": "Hotel Reservation",
|
| 200 |
+
"description": "Hotel booking confirmation with accommodation details, check-in/out dates, and room information.",
|
| 201 |
+
"keywords": [
|
| 202 |
+
"hotel",
|
| 203 |
+
"reservation",
|
| 204 |
+
"booking",
|
| 205 |
+
"accommodation",
|
| 206 |
+
"check-in",
|
| 207 |
+
"check-out",
|
| 208 |
+
"room",
|
| 209 |
+
],
|
| 210 |
+
},
|
| 211 |
+
"travel_insurance": {
|
| 212 |
+
"name": "Travel Insurance",
|
| 213 |
+
"description": "Insurance policy document covering travel-related risks, coverage details, and policy terms.",
|
| 214 |
+
"keywords": [
|
| 215 |
+
"insurance",
|
| 216 |
+
"policy",
|
| 217 |
+
"coverage",
|
| 218 |
+
"travel",
|
| 219 |
+
"risk",
|
| 220 |
+
"terms",
|
| 221 |
+
"protection",
|
| 222 |
+
],
|
| 223 |
+
},
|
| 224 |
+
}
|
| 225 |
+
|
| 226 |
+
# Example 3: Employment-focused products
|
| 227 |
+
employment_products = {
|
| 228 |
+
"cv_resume": {
|
| 229 |
+
"name": "CV/Resume",
|
| 230 |
+
"description": "Document summarizing education, work experience, skills, and qualifications for employment.",
|
| 231 |
+
"keywords": [
|
| 232 |
+
"resume",
|
| 233 |
+
"cv",
|
| 234 |
+
"experience",
|
| 235 |
+
"education",
|
| 236 |
+
"skills",
|
| 237 |
+
"employment",
|
| 238 |
+
"qualifications",
|
| 239 |
+
],
|
| 240 |
+
},
|
| 241 |
+
"job_offer": {
|
| 242 |
+
"name": "Job Offer",
|
| 243 |
+
"description": "Employment offer letter with position details, salary, benefits, and employment terms.",
|
| 244 |
+
"keywords": [
|
| 245 |
+
"job offer",
|
| 246 |
+
"employment",
|
| 247 |
+
"position",
|
| 248 |
+
"salary",
|
| 249 |
+
"benefits",
|
| 250 |
+
"terms",
|
| 251 |
+
"offer letter",
|
| 252 |
+
],
|
| 253 |
+
},
|
| 254 |
+
"employment_contract": {
|
| 255 |
+
"name": "Employment Contract",
|
| 256 |
+
"description": "Legal employment agreement with terms, conditions, responsibilities, and employment rights.",
|
| 257 |
+
"keywords": [
|
| 258 |
+
"contract",
|
| 259 |
+
"employment",
|
| 260 |
+
"terms",
|
| 261 |
+
"conditions",
|
| 262 |
+
"responsibilities",
|
| 263 |
+
"rights",
|
| 264 |
+
"agreement",
|
| 265 |
+
],
|
| 266 |
+
},
|
| 267 |
+
}
|
| 268 |
+
|
| 269 |
+
gr.Examples(
|
| 270 |
+
examples=[
|
| 271 |
+
[
|
| 272 |
+
None, # No PDF file
|
| 273 |
+
json.dumps(invoice_products, indent=2),
|
| 274 |
+
"smart_semantic",
|
| 275 |
+
],
|
| 276 |
+
[
|
| 277 |
+
None, # No PDF file
|
| 278 |
+
json.dumps(travel_products, indent=2),
|
| 279 |
+
"smart_semantic",
|
| 280 |
+
],
|
| 281 |
+
[
|
| 282 |
+
None, # No PDF file
|
| 283 |
+
json.dumps(employment_products, indent=2),
|
| 284 |
+
"smart_semantic",
|
| 285 |
+
],
|
| 286 |
+
],
|
| 287 |
+
inputs=[pdf_input, products_input, method_dropdown],
|
| 288 |
+
label="Product Definition Examples",
|
| 289 |
+
)
|
| 290 |
+
|
| 291 |
+
# Set up event handlers
|
| 292 |
+
classify_btn.click(
|
| 293 |
+
fn=classify_document,
|
| 294 |
+
inputs=[pdf_input, products_input, method_dropdown],
|
| 295 |
+
outputs=[results_output, summary_output],
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
+
if __name__ == "__main__":
|
| 299 |
+
demo.launch()
|
pdf_qa/__init__.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
PDF Question Answering Package
|
| 3 |
+
|
| 4 |
+
A modular package for processing PDFs and answering questions using AI.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
__version__ = "1.0.0"
|
| 8 |
+
__author__ = "PDF QA Team"
|
pdf_qa/pdf_processor.py
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
PDF Processing Module
|
| 3 |
+
|
| 4 |
+
Simple PDF text extraction and chunking.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
from typing import List
|
| 8 |
+
from langchain_community.document_loaders import PyPDFLoader
|
| 9 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 10 |
+
from langchain_core.documents import Document
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class PDFProcessor:
|
| 14 |
+
"""Simple PDF text extraction and chunking."""
|
| 15 |
+
|
| 16 |
+
def __init__(self, chunk_size: int = 1000, chunk_overlap: int = 200) -> None:
|
| 17 |
+
self.text_splitter = RecursiveCharacterTextSplitter(
|
| 18 |
+
chunk_size=chunk_size,
|
| 19 |
+
chunk_overlap=chunk_overlap,
|
| 20 |
+
length_function=len,
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
def process_pdf(self, pdf_file: str) -> List[Document]:
|
| 24 |
+
"""Extract text from PDF and split into chunks."""
|
| 25 |
+
# Load and extract text
|
| 26 |
+
loader = PyPDFLoader(pdf_file)
|
| 27 |
+
pages = []
|
| 28 |
+
for page in loader.lazy_load():
|
| 29 |
+
pages.append(page)
|
| 30 |
+
|
| 31 |
+
return pages
|
pdf_qa/product_classifier.py
ADDED
|
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Document Classification Module
|
| 3 |
+
|
| 4 |
+
Classifies PDF documents into product categories using different methods.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import json
|
| 8 |
+
from typing import List, Tuple, Dict
|
| 9 |
+
from langchain_openai.embeddings import OpenAIEmbeddings
|
| 10 |
+
from langchain_openai.chat_models import ChatOpenAI
|
| 11 |
+
from langchain_core.vectorstores import InMemoryVectorStore
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class ProductClassifier:
|
| 15 |
+
"""Classifies documents into product categories."""
|
| 16 |
+
|
| 17 |
+
def __init__(self, products, temperature=0):
|
| 18 |
+
self.products = products
|
| 19 |
+
self.temperature = temperature
|
| 20 |
+
self.embeddings = OpenAIEmbeddings()
|
| 21 |
+
self.llm = ChatOpenAI(temperature=temperature)
|
| 22 |
+
|
| 23 |
+
def _extract_text_from_documents(self, documents: List) -> str:
|
| 24 |
+
"""Extract text from a list of Document objects."""
|
| 25 |
+
if not documents:
|
| 26 |
+
return ""
|
| 27 |
+
|
| 28 |
+
# Combine all document content
|
| 29 |
+
text_parts = []
|
| 30 |
+
for doc in documents:
|
| 31 |
+
if hasattr(doc, "page_content"):
|
| 32 |
+
text_parts.append(doc.page_content)
|
| 33 |
+
elif isinstance(doc, str):
|
| 34 |
+
text_parts.append(doc)
|
| 35 |
+
else:
|
| 36 |
+
# Handle other document types
|
| 37 |
+
text_parts.append(str(doc))
|
| 38 |
+
|
| 39 |
+
return "\n".join(text_parts)
|
| 40 |
+
|
| 41 |
+
def semantic_similarity_classification(
|
| 42 |
+
self, documents: List, products: Dict
|
| 43 |
+
) -> List[Tuple[str, float]]:
|
| 44 |
+
"""Classify using semantic similarity with embeddings."""
|
| 45 |
+
# Create vector store from documents
|
| 46 |
+
vector_store = InMemoryVectorStore.from_documents(documents, self.embeddings)
|
| 47 |
+
|
| 48 |
+
# Calculate similarities with each product
|
| 49 |
+
similarities = []
|
| 50 |
+
for product_id, product_info in products.items():
|
| 51 |
+
# Search for similar content using product description
|
| 52 |
+
similar_docs = vector_store.similarity_search_with_score(
|
| 53 |
+
json.dumps(product_info), k=1
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
# Get similarity score (higher is better)
|
| 57 |
+
if similar_docs:
|
| 58 |
+
similarity = similar_docs[0][1] # Direct similarity score
|
| 59 |
+
else:
|
| 60 |
+
similarity = 0
|
| 61 |
+
|
| 62 |
+
similarities.append((product_id, similarity))
|
| 63 |
+
|
| 64 |
+
# Sort by similarity (highest first)
|
| 65 |
+
similarities.sort(key=lambda x: x[1], reverse=True)
|
| 66 |
+
return similarities
|
| 67 |
+
|
| 68 |
+
def smart_semantic_classification(
|
| 69 |
+
self, documents: List, products: Dict
|
| 70 |
+
) -> List[Tuple[str, float]]:
|
| 71 |
+
"""Classify using LLM summarization + semantic similarity."""
|
| 72 |
+
# Generate summary
|
| 73 |
+
summary = self._generate_summary(self._extract_text_from_documents(documents))
|
| 74 |
+
|
| 75 |
+
# Create vector store with summary
|
| 76 |
+
vector_store = InMemoryVectorStore.from_texts([summary], self.embeddings)
|
| 77 |
+
|
| 78 |
+
# Calculate similarities with each product
|
| 79 |
+
similarities = []
|
| 80 |
+
for product_id, product_info in products.items():
|
| 81 |
+
# Search for similar content using product description
|
| 82 |
+
similar_docs = vector_store.similarity_search_with_score(
|
| 83 |
+
product_info["description"], k=1
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
# Get similarity score (higher is better)
|
| 87 |
+
if similar_docs:
|
| 88 |
+
similarity = similar_docs[0][1] # Direct similarity score
|
| 89 |
+
else:
|
| 90 |
+
similarity = 0
|
| 91 |
+
|
| 92 |
+
similarities.append((product_id, similarity))
|
| 93 |
+
|
| 94 |
+
# Sort by similarity (highest first)
|
| 95 |
+
similarities.sort(key=lambda x: x[1], reverse=True)
|
| 96 |
+
return similarities
|
| 97 |
+
|
| 98 |
+
def _generate_summary(self, text: str) -> str:
|
| 99 |
+
"""Generate a summary of the document text."""
|
| 100 |
+
prompt = f"""Summarize the following document, focusing on the main type and purpose of the document:
|
| 101 |
+
|
| 102 |
+
{text}...
|
| 103 |
+
|
| 104 |
+
Summary:"""
|
| 105 |
+
|
| 106 |
+
try:
|
| 107 |
+
response = self.llm.invoke(prompt)
|
| 108 |
+
return response.content.strip()
|
| 109 |
+
except Exception:
|
| 110 |
+
# Fallback to first 500 characters if summarization fails
|
| 111 |
+
return text[:1000]
|
| 112 |
+
|
| 113 |
+
def keyword_matching_classification(
|
| 114 |
+
self, documents: List, products: Dict
|
| 115 |
+
) -> List[Tuple[str, float]]:
|
| 116 |
+
"""Classify using keyword matching."""
|
| 117 |
+
# Extract text from documents
|
| 118 |
+
document_text = self._extract_text_from_documents(documents)
|
| 119 |
+
document_text_lower = document_text.lower()
|
| 120 |
+
|
| 121 |
+
scores = []
|
| 122 |
+
for product_id, product_info in products.items():
|
| 123 |
+
keywords = product_info["keywords"]
|
| 124 |
+
matches = sum(
|
| 125 |
+
1 for keyword in keywords if keyword.lower() in document_text_lower
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
# Calculate score based on keyword matches
|
| 129 |
+
score = matches / len(keywords) if keywords else 0
|
| 130 |
+
scores.append((product_id, score))
|
| 131 |
+
|
| 132 |
+
# Sort by score (highest first)
|
| 133 |
+
scores.sort(key=lambda x: x[1], reverse=True)
|
| 134 |
+
return scores
|
| 135 |
+
|
| 136 |
+
def hybrid_classification(
|
| 137 |
+
self, documents: List, products: Dict
|
| 138 |
+
) -> List[Tuple[str, float]]:
|
| 139 |
+
"""Classify using both semantic similarity and keyword matching."""
|
| 140 |
+
semantic_results = self.semantic_similarity_classification(documents, products)
|
| 141 |
+
keyword_results = self.keyword_matching_classification(documents, products)
|
| 142 |
+
|
| 143 |
+
# Combine scores (70% semantic, 30% keyword)
|
| 144 |
+
combined_scores = {}
|
| 145 |
+
for product_id, semantic_score in semantic_results:
|
| 146 |
+
keyword_score = next(
|
| 147 |
+
(score for pid, score in keyword_results if pid == product_id), 0
|
| 148 |
+
)
|
| 149 |
+
combined_score = 0.7 * semantic_score + 0.3 * keyword_score
|
| 150 |
+
combined_scores[product_id] = combined_score
|
| 151 |
+
|
| 152 |
+
# Sort by combined score
|
| 153 |
+
sorted_results = sorted(
|
| 154 |
+
combined_scores.items(), key=lambda x: x[1], reverse=True
|
| 155 |
+
)
|
| 156 |
+
return sorted_results
|
| 157 |
+
|
| 158 |
+
def classify_document(
|
| 159 |
+
self, documents: List, products: Dict, method: str = "hybrid"
|
| 160 |
+
) -> List[Tuple[str, float]]:
|
| 161 |
+
"""Classify document using specified method."""
|
| 162 |
+
if method == "semantic":
|
| 163 |
+
return self.semantic_similarity_classification(documents, products)
|
| 164 |
+
if method == "smart_semantic":
|
| 165 |
+
return self.smart_semantic_classification(documents, products)
|
| 166 |
+
if method == "keyword":
|
| 167 |
+
return self.keyword_matching_classification(documents, products)
|
| 168 |
+
if method == "hybrid":
|
| 169 |
+
return self.hybrid_classification(documents, products)
|
| 170 |
+
raise ValueError(f"Unknown classification method: {method}")
|
| 171 |
+
|
| 172 |
+
def get_summary(self, documents: List) -> str:
|
| 173 |
+
"""Get document summary for display."""
|
| 174 |
+
return self._generate_summary(self._extract_text_from_documents(documents))
|
| 175 |
+
|
| 176 |
+
def get_product_info(self, product_id: str) -> Dict:
|
| 177 |
+
"""Get product information by ID."""
|
| 178 |
+
return self.products.get(product_id, {})
|
pdf_qa/qa_engine.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Question Answering Engine
|
| 3 |
+
|
| 4 |
+
Simple Q&A using LangChain and OpenAI.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
from langchain_openai.chat_models import ChatOpenAI
|
| 9 |
+
from langchain_openai.embeddings import OpenAIEmbeddings
|
| 10 |
+
from langchain_community.vectorstores import FAISS
|
| 11 |
+
from langchain_core.runnables import RunnablePassthrough
|
| 12 |
+
from langchain_core.output_parsers import StrOutputParser
|
| 13 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class QAEngine:
|
| 17 |
+
"""Simple question answering engine."""
|
| 18 |
+
|
| 19 |
+
def __init__(self, temperature=0):
|
| 20 |
+
self.temperature = temperature
|
| 21 |
+
self.retriever = None
|
| 22 |
+
self.llm = None
|
| 23 |
+
|
| 24 |
+
def setup(self, chunks):
|
| 25 |
+
"""Setup QA chain with document chunks."""
|
| 26 |
+
if not os.getenv("OPENAI_API_KEY"):
|
| 27 |
+
raise ValueError("OPENAI_API_KEY not set")
|
| 28 |
+
|
| 29 |
+
# Create vector store
|
| 30 |
+
embeddings = OpenAIEmbeddings()
|
| 31 |
+
vector_store = FAISS.from_texts(chunks, embeddings)
|
| 32 |
+
|
| 33 |
+
# Setup retriever and LLM
|
| 34 |
+
self.retriever = vector_store.as_retriever(search_kwargs={"k": 3})
|
| 35 |
+
self.llm = ChatOpenAI(temperature=self.temperature)
|
| 36 |
+
|
| 37 |
+
def ask(self, question):
|
| 38 |
+
"""Ask a question about the document."""
|
| 39 |
+
if not self.retriever or not self.llm:
|
| 40 |
+
raise ValueError("Please process a PDF first")
|
| 41 |
+
|
| 42 |
+
if not question.strip():
|
| 43 |
+
raise ValueError("Please enter a question")
|
| 44 |
+
|
| 45 |
+
# Create prompt template
|
| 46 |
+
template = """Answer the question based on the following context:
|
| 47 |
+
|
| 48 |
+
Context: {context}
|
| 49 |
+
|
| 50 |
+
Question: {question}
|
| 51 |
+
|
| 52 |
+
Answer:"""
|
| 53 |
+
|
| 54 |
+
prompt = ChatPromptTemplate.from_template(template)
|
| 55 |
+
|
| 56 |
+
# Create chain
|
| 57 |
+
chain = (
|
| 58 |
+
{"context": self.retriever, "question": RunnablePassthrough()}
|
| 59 |
+
| prompt
|
| 60 |
+
| self.llm
|
| 61 |
+
| StrOutputParser()
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
return chain.invoke(question)
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
langchain
|
| 3 |
+
langchain-openai
|
| 4 |
+
langchain-community
|
| 5 |
+
langchain-core
|
| 6 |
+
langchain-text-splitters
|
| 7 |
+
openai
|
| 8 |
+
faiss-cpu
|
| 9 |
+
pypdf
|
| 10 |
+
python-dotenv
|
test_simple.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Simple test for the Document Classification application
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
import sys
|
| 8 |
+
|
| 9 |
+
# Load .env file only in development (optional)
|
| 10 |
+
try:
|
| 11 |
+
from dotenv import load_dotenv
|
| 12 |
+
load_dotenv()
|
| 13 |
+
except ImportError:
|
| 14 |
+
pass # dotenv not available in production
|
| 15 |
+
|
| 16 |
+
def test_imports():
|
| 17 |
+
"""Test that all modules can be imported."""
|
| 18 |
+
print("🧪 Testing Document Classification Structure")
|
| 19 |
+
print("=" * 50)
|
| 20 |
+
|
| 21 |
+
try:
|
| 22 |
+
from pdf_qa.pdf_processor import PDFProcessor
|
| 23 |
+
from pdf_qa.product_classifier import ProductClassifier
|
| 24 |
+
print("✅ All modules imported successfully")
|
| 25 |
+
|
| 26 |
+
# Test initialization
|
| 27 |
+
pdf_processor = PDFProcessor()
|
| 28 |
+
classifier = ProductClassifier()
|
| 29 |
+
print("✅ Components initialized successfully")
|
| 30 |
+
|
| 31 |
+
# Test classification methods
|
| 32 |
+
test_products = {
|
| 33 |
+
"test": {
|
| 34 |
+
"name": "Test Product",
|
| 35 |
+
"description": "A test product for classification",
|
| 36 |
+
"keywords": ["test", "product"]
|
| 37 |
+
}
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
# Test classifier initialization
|
| 41 |
+
classifier = ProductClassifier(test_products)
|
| 42 |
+
print("✅ Classification methods available")
|
| 43 |
+
|
| 44 |
+
# Check API key
|
| 45 |
+
if not os.getenv("OPENAI_API_KEY"):
|
| 46 |
+
print("⚠️ OPENAI_API_KEY not set (expected for testing)")
|
| 47 |
+
else:
|
| 48 |
+
print("✅ OPENAI_API_KEY found")
|
| 49 |
+
|
| 50 |
+
print("\n🎉 Document classification structure working correctly!")
|
| 51 |
+
print("\nTo run the app:")
|
| 52 |
+
print("1. Set OPENAI_API_KEY environment variable")
|
| 53 |
+
print("2. Run: python app.py")
|
| 54 |
+
|
| 55 |
+
return True
|
| 56 |
+
|
| 57 |
+
except Exception as e:
|
| 58 |
+
print(f"❌ Error: {str(e)}")
|
| 59 |
+
return False
|
| 60 |
+
|
| 61 |
+
if __name__ == "__main__":
|
| 62 |
+
success = test_imports()
|
| 63 |
+
sys.exit(0 if success else 1)
|