Spaces:
Runtime error
Runtime error
| import torch, json, os, imageio, argparse | |
| from torchvision.transforms import v2 | |
| import numpy as np | |
| from einops import rearrange, repeat | |
| import lightning as pl | |
| from diffsynth import ModelManager, SVDImageEncoder, SVDUNet, SVDVAEEncoder, ContinuousODEScheduler, load_state_dict | |
| from diffsynth.pipelines.stable_video_diffusion import SVDCLIPImageProcessor | |
| from diffsynth.models.svd_unet import TemporalAttentionBlock | |
| class TextVideoDataset(torch.utils.data.Dataset): | |
| def __init__(self, base_path, metadata_path, steps_per_epoch=10000, training_shapes=[(128, 1, 128, 512, 512)]): | |
| with open(metadata_path, "r") as f: | |
| metadata = json.load(f) | |
| self.path = [os.path.join(base_path, i["path"]) for i in metadata] | |
| self.steps_per_epoch = steps_per_epoch | |
| self.training_shapes = training_shapes | |
| self.frame_process = [] | |
| for max_num_frames, interval, num_frames, height, width in training_shapes: | |
| self.frame_process.append(v2.Compose([ | |
| v2.Resize(size=max(height, width), antialias=True), | |
| v2.CenterCrop(size=(height, width)), | |
| v2.Normalize(mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5]), | |
| ])) | |
| def load_frames_using_imageio(self, file_path, max_num_frames, start_frame_id, interval, num_frames, frame_process): | |
| reader = imageio.get_reader(file_path) | |
| if reader.count_frames() < max_num_frames or reader.count_frames() - 1 < start_frame_id + (num_frames - 1) * interval: | |
| reader.close() | |
| return None | |
| frames = [] | |
| for frame_id in range(num_frames): | |
| frame = reader.get_data(start_frame_id + frame_id * interval) | |
| frame = torch.tensor(frame, dtype=torch.float32) | |
| frame = rearrange(frame, "H W C -> 1 C H W") | |
| frame = frame_process(frame) | |
| frames.append(frame) | |
| reader.close() | |
| frames = torch.concat(frames, dim=0) | |
| frames = rearrange(frames, "T C H W -> C T H W") | |
| return frames | |
| def load_video(self, file_path, training_shape_id): | |
| data = {} | |
| max_num_frames, interval, num_frames, height, width = self.training_shapes[training_shape_id] | |
| frame_process = self.frame_process[training_shape_id] | |
| start_frame_id = torch.randint(0, max_num_frames - (num_frames - 1) * interval, (1,))[0] | |
| frames = self.load_frames_using_imageio(file_path, max_num_frames, start_frame_id, interval, num_frames, frame_process) | |
| if frames is None: | |
| return None | |
| else: | |
| data[f"frames_{training_shape_id}"] = frames | |
| return data | |
| def __getitem__(self, index): | |
| video_data = {} | |
| for training_shape_id in range(len(self.training_shapes)): | |
| while True: | |
| data_id = torch.randint(0, len(self.path), (1,))[0] | |
| data_id = (data_id + index) % len(self.path) # For fixed seed. | |
| video_file = self.path[data_id] | |
| try: | |
| data = self.load_video(video_file, training_shape_id) | |
| except: | |
| data = None | |
| if data is not None: | |
| break | |
| video_data.update(data) | |
| return video_data | |
| def __len__(self): | |
| return self.steps_per_epoch | |
| class MotionBucketManager: | |
| def __init__(self): | |
| self.thresholds = [ | |
| 0.000000000, 0.012205946, 0.015117834, 0.018080613, 0.020614484, 0.021959992, 0.024088068, 0.026323952, | |
| 0.028277775, 0.029968588, 0.031836554, 0.033596724, 0.035121530, 0.037200287, 0.038914755, 0.040696491, | |
| 0.042368013, 0.044265781, 0.046311017, 0.048243891, 0.050294187, 0.052142400, 0.053634230, 0.055612389, | |
| 0.057594258, 0.059410289, 0.061283995, 0.063603796, 0.065192916, 0.067146860, 0.069066539, 0.070390493, | |
| 0.072588451, 0.073959745, 0.075889029, 0.077695683, 0.079783581, 0.082162730, 0.084092639, 0.085958421, | |
| 0.087700523, 0.089684933, 0.091688842, 0.093335517, 0.094987206, 0.096664011, 0.098314710, 0.100262381, | |
| 0.101984538, 0.103404313, 0.105280340, 0.106974818, 0.109028399, 0.111164779, 0.113065213, 0.114362158, | |
| 0.116407216, 0.118063427, 0.119524263, 0.121835820, 0.124242283, 0.126202747, 0.128989249, 0.131672353, | |
| 0.133417681, 0.135567948, 0.137313649, 0.139189199, 0.140912935, 0.143525436, 0.145718485, 0.148315132, | |
| 0.151039496, 0.153218940, 0.155252382, 0.157651082, 0.159966752, 0.162195817, 0.164811596, 0.167341709, | |
| 0.170251891, 0.172651157, 0.175550997, 0.178372145, 0.181039348, 0.183565900, 0.186599866, 0.190071866, | |
| 0.192574754, 0.195026234, 0.198099136, 0.200210452, 0.202522039, 0.205410406, 0.208610669, 0.211623028, | |
| 0.214723110, 0.218520239, 0.222194016, 0.225363150, 0.229384825, 0.233422622, 0.237012610, 0.240735114, | |
| 0.243622541, 0.247465774, 0.252190471, 0.257356376, 0.261856794, 0.266556412, 0.271076709, 0.277361482, | |
| 0.281250387, 0.286582440, 0.291158527, 0.296712339, 0.303008437, 0.311793238, 0.318485111, 0.326999635, | |
| 0.332138240, 0.341770738, 0.354188830, 0.365194678, 0.379234344, 0.401538879, 0.416078776, 0.440871328, | |
| ] | |
| def get_motion_score(self, frames): | |
| score = frames.std(dim=2).mean(dim=[1, 2, 3]).tolist() | |
| return score | |
| def get_bucket_id(self, motion_score): | |
| for bucket_id in range(len(self.thresholds) - 1): | |
| if self.thresholds[bucket_id + 1] > motion_score: | |
| return bucket_id | |
| return len(self.thresholds) - 1 | |
| def __call__(self, frames): | |
| scores = self.get_motion_score(frames) | |
| bucket_ids = [self.get_bucket_id(score) for score in scores] | |
| return bucket_ids | |
| class LightningModel(pl.LightningModule): | |
| def __init__(self, learning_rate=1e-5, svd_ckpt_path=None, add_positional_conv=128, contrast_enhance_scale=1.01): | |
| super().__init__() | |
| model_manager = ModelManager(torch_dtype=torch.float16, device=self.device) | |
| model_manager.load_stable_video_diffusion(state_dict=load_state_dict(svd_ckpt_path), add_positional_conv=add_positional_conv) | |
| self.image_encoder: SVDImageEncoder = model_manager.image_encoder | |
| self.image_encoder.eval() | |
| self.image_encoder.requires_grad_(False) | |
| self.unet: SVDUNet = model_manager.unet | |
| self.unet.train() | |
| self.unet.requires_grad_(False) | |
| for block in self.unet.blocks: | |
| if isinstance(block, TemporalAttentionBlock): | |
| block.requires_grad_(True) | |
| self.vae_encoder: SVDVAEEncoder = model_manager.vae_encoder | |
| self.vae_encoder.eval() | |
| self.vae_encoder.requires_grad_(False) | |
| self.noise_scheduler = ContinuousODEScheduler(num_inference_steps=1000) | |
| self.learning_rate = learning_rate | |
| self.motion_bucket_manager = MotionBucketManager() | |
| self.contrast_enhance_scale = contrast_enhance_scale | |
| def encode_image_with_clip(self, image): | |
| image = SVDCLIPImageProcessor().resize_with_antialiasing(image, (224, 224)) | |
| image = (image + 1.0) / 2.0 | |
| mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).reshape(1, 3, 1, 1).to(device=self.device, dtype=self.dtype) | |
| std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).reshape(1, 3, 1, 1).to(device=self.device, dtype=self.dtype) | |
| image = (image - mean) / std | |
| image_emb = self.image_encoder(image) | |
| return image_emb | |
| def encode_video_with_vae(self, video): | |
| video = video.to(device=self.device, dtype=self.dtype) | |
| video = video.unsqueeze(0) | |
| latents = self.vae_encoder.encode_video(video) | |
| latents = rearrange(latents[0], "C T H W -> T C H W") | |
| return latents | |
| def tensor2video(self, frames): | |
| frames = rearrange(frames, "C T H W -> T H W C") | |
| frames = ((frames.float() + 1) * 127.5).clip(0, 255).cpu().numpy().astype(np.uint8) | |
| return frames | |
| def calculate_loss(self, frames): | |
| with torch.no_grad(): | |
| # Call video encoder | |
| latents = self.encode_video_with_vae(frames) | |
| image_emb_vae = repeat(latents[0] / self.vae_encoder.scaling_factor, "C H W -> T C H W", T=frames.shape[1]) | |
| image_emb_clip = self.encode_image_with_clip(frames[:,0].unsqueeze(0)) | |
| # Call scheduler | |
| timestep = torch.randint(0, len(self.noise_scheduler.timesteps), (1,))[0] | |
| timestep = self.noise_scheduler.timesteps[timestep] | |
| noise = torch.randn_like(latents) | |
| noisy_latents = self.noise_scheduler.add_noise(latents, noise, timestep) | |
| # Prepare positional id | |
| fps = 30 | |
| motion_bucket_id = self.motion_bucket_manager(frames.unsqueeze(0))[0] | |
| noise_aug_strength = 0 | |
| add_time_id = torch.tensor([[fps-1, motion_bucket_id, noise_aug_strength]], device=self.device) | |
| # Calculate loss | |
| latents_input = torch.cat([noisy_latents, image_emb_vae], dim=1) | |
| model_pred = self.unet(latents_input, timestep, image_emb_clip, add_time_id, use_gradient_checkpointing=True) | |
| latents_output = self.noise_scheduler.step(model_pred.float(), timestep, noisy_latents.float(), to_final=True) | |
| loss = torch.nn.functional.mse_loss(latents_output, latents.float() * self.contrast_enhance_scale, reduction="mean") | |
| # Re-weighting | |
| reweighted_loss = loss * self.noise_scheduler.training_weight(timestep) | |
| return loss, reweighted_loss | |
| def training_step(self, batch, batch_idx): | |
| # Loss | |
| frames = batch["frames_0"][0] | |
| loss, reweighted_loss = self.calculate_loss(frames) | |
| # Record log | |
| self.log("train_loss", loss, prog_bar=True) | |
| self.log("reweighted_train_loss", reweighted_loss, prog_bar=True) | |
| return reweighted_loss | |
| def configure_optimizers(self): | |
| trainable_modules = [] | |
| for block in self.unet.blocks: | |
| if isinstance(block, TemporalAttentionBlock): | |
| trainable_modules += block.parameters() | |
| optimizer = torch.optim.AdamW(trainable_modules, lr=self.learning_rate) | |
| return optimizer | |
| def on_save_checkpoint(self, checkpoint): | |
| trainable_param_names = list(filter(lambda named_param: named_param[1].requires_grad, self.unet.named_parameters())) | |
| trainable_param_names = [named_param[0] for named_param in trainable_param_names] | |
| checkpoint["trainable_param_names"] = trainable_param_names | |
| def parse_args(): | |
| parser = argparse.ArgumentParser(description="Simple example of a training script.") | |
| parser.add_argument( | |
| "--pretrained_path", | |
| type=str, | |
| default=None, | |
| required=True, | |
| help="Path to pretrained model. For example, `models/stable_video_diffusion/svd_xt.safetensors`.", | |
| ) | |
| parser.add_argument( | |
| "--resume_from_checkpoint", | |
| type=str, | |
| default=None, | |
| required=False, | |
| help="Path to checkpoint, in case your training program is stopped unexpectedly and you want to resume.", | |
| ) | |
| parser.add_argument( | |
| "--dataset_path", | |
| type=str, | |
| default=None, | |
| required=True, | |
| help="The path of the Dataset.", | |
| ) | |
| parser.add_argument( | |
| "--output_path", | |
| type=str, | |
| default="./", | |
| help="Path to save the model.", | |
| ) | |
| parser.add_argument( | |
| "--steps_per_epoch", | |
| type=int, | |
| default=500, | |
| help="Number of steps per epoch.", | |
| ) | |
| parser.add_argument( | |
| "--num_frames", | |
| type=int, | |
| default=128, | |
| help="Number of frames.", | |
| ) | |
| parser.add_argument( | |
| "--height", | |
| type=int, | |
| default=512, | |
| help="Image height.", | |
| ) | |
| parser.add_argument( | |
| "--width", | |
| type=int, | |
| default=512, | |
| help="Image width.", | |
| ) | |
| parser.add_argument( | |
| "--dataloader_num_workers", | |
| type=int, | |
| default=2, | |
| help="Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process.", | |
| ) | |
| parser.add_argument( | |
| "--learning_rate", | |
| type=float, | |
| default=1e-5, | |
| help="Learning rate.", | |
| ) | |
| parser.add_argument( | |
| "--accumulate_grad_batches", | |
| type=int, | |
| default=1, | |
| help="The number of batches in gradient accumulation.", | |
| ) | |
| parser.add_argument( | |
| "--max_epochs", | |
| type=int, | |
| default=1, | |
| help="Number of epochs.", | |
| ) | |
| parser.add_argument( | |
| "--contrast_enhance_scale", | |
| type=float, | |
| default=1.01, | |
| help="Avoid generating gray videos.", | |
| ) | |
| args = parser.parse_args() | |
| return args | |
| if __name__ == '__main__': | |
| # args | |
| args = parse_args() | |
| # dataset and data loader | |
| dataset = TextVideoDataset( | |
| args.dataset_path, | |
| os.path.join(args.dataset_path, "metadata.json"), | |
| training_shapes=[(args.num_frames, 1, args.num_frames, args.height, args.width)], | |
| steps_per_epoch=args.steps_per_epoch, | |
| ) | |
| train_loader = torch.utils.data.DataLoader( | |
| dataset, | |
| shuffle=True, | |
| # We don't support batch_size > 1, | |
| # because sometimes our GPU cannot process even one video. | |
| batch_size=1, | |
| num_workers=args.dataloader_num_workers | |
| ) | |
| # model | |
| model = LightningModel( | |
| learning_rate=args.learning_rate, | |
| svd_ckpt_path=args.pretrained_path, | |
| add_positional_conv=args.num_frames, | |
| contrast_enhance_scale=args.contrast_enhance_scale | |
| ) | |
| # train | |
| trainer = pl.Trainer( | |
| max_epochs=args.max_epochs, | |
| accelerator="gpu", | |
| devices="auto", | |
| strategy="deepspeed_stage_2", | |
| precision="16-mixed", | |
| default_root_dir=args.output_path, | |
| accumulate_grad_batches=args.accumulate_grad_batches, | |
| callbacks=[pl.pytorch.callbacks.ModelCheckpoint(save_top_k=-1)] | |
| ) | |
| trainer.fit( | |
| model=model, | |
| train_dataloaders=train_loader, | |
| ckpt_path=args.resume_from_checkpoint | |
| ) | |