Spaces:
Runtime error
Runtime error
Create app_new.py
Browse files- app_new.py +237 -0
app_new.py
ADDED
|
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import subprocess
|
| 2 |
+
subprocess.run(
|
| 3 |
+
'pip install numpy==1.26.4',
|
| 4 |
+
shell=True
|
| 5 |
+
)
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
import gradio as gr
|
| 9 |
+
import torch
|
| 10 |
+
import spaces
|
| 11 |
+
import random
|
| 12 |
+
from PIL import Image
|
| 13 |
+
import numpy as np
|
| 14 |
+
|
| 15 |
+
from glob import glob
|
| 16 |
+
from pathlib import Path
|
| 17 |
+
from typing import Optional
|
| 18 |
+
|
| 19 |
+
#Core functions from https://github.com/modelscope/DiffSynth-Studio
|
| 20 |
+
from diffsynth import save_video, ModelManager, SVDVideoPipeline
|
| 21 |
+
from diffsynth import SDVideoPipeline, ControlNetConfigUnit, VideoData, save_frames
|
| 22 |
+
from diffsynth.extensions.RIFE import RIFESmoother
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
# Constants
|
| 27 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 28 |
+
CSS = """
|
| 29 |
+
footer {
|
| 30 |
+
visibility: hidden;
|
| 31 |
+
}
|
| 32 |
+
"""
|
| 33 |
+
|
| 34 |
+
JS = """function () {
|
| 35 |
+
gradioURL = window.location.href
|
| 36 |
+
if (!gradioURL.endsWith('?__theme=dark')) {
|
| 37 |
+
window.location.replace(gradioURL + '?__theme=dark');
|
| 38 |
+
}
|
| 39 |
+
}"""
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
# Ensure model and scheduler are initialized in GPU-enabled function
|
| 43 |
+
if torch.cuda.is_available():
|
| 44 |
+
|
| 45 |
+
model_manager2 = ModelManager(torch_dtype=torch.float16, device="cuda")
|
| 46 |
+
model_manager2.load_textual_inversions("models/textual_inversion")
|
| 47 |
+
model_manager2.load_models([
|
| 48 |
+
"models/stable_diffusion/flat2DAnimerge_v45Sharp.safetensors",
|
| 49 |
+
"models/AnimateDiff/mm_sd_v15_v2.ckpt",
|
| 50 |
+
"models/ControlNet/control_v11p_sd15_lineart.pth",
|
| 51 |
+
"models/ControlNet/control_v11f1e_sd15_tile.pth",
|
| 52 |
+
"models/RIFE/flownet.pkl"
|
| 53 |
+
])
|
| 54 |
+
pipe2 = SDVideoPipeline.from_model_manager(
|
| 55 |
+
model_manager2,
|
| 56 |
+
[
|
| 57 |
+
ControlNetConfigUnit(
|
| 58 |
+
processor_id="lineart",
|
| 59 |
+
model_path="models/ControlNet/control_v11p_sd15_lineart.pth",
|
| 60 |
+
scale=0.5
|
| 61 |
+
),
|
| 62 |
+
ControlNetConfigUnit(
|
| 63 |
+
processor_id="tile",
|
| 64 |
+
model_path="models/ControlNet/control_v11f1e_sd15_tile.pth",
|
| 65 |
+
scale=0.5
|
| 66 |
+
)
|
| 67 |
+
]
|
| 68 |
+
)
|
| 69 |
+
smoother = RIFESmoother.from_model_manager(model_manager2)
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def update_frames(video_in):
|
| 74 |
+
up_video = VideoData(
|
| 75 |
+
video_file=video_in)
|
| 76 |
+
frame_len = len(up_video)
|
| 77 |
+
return gr.update(maximum=frame_len)
|
| 78 |
+
|
| 79 |
+
@spaces.GPU(duration=180)
|
| 80 |
+
def generate(
|
| 81 |
+
video_in,
|
| 82 |
+
image_in,
|
| 83 |
+
prompt: str = "best quality",
|
| 84 |
+
seed: int = -1,
|
| 85 |
+
num_inference_steps: int = 10,
|
| 86 |
+
num_frames: int = 30,
|
| 87 |
+
height: int = 512,
|
| 88 |
+
width: int = 512,
|
| 89 |
+
animatediff_batch_size: int = 32,
|
| 90 |
+
animatediff_stride: int = 16,
|
| 91 |
+
fps_id: int = 25,
|
| 92 |
+
output_folder: str = "outputs",
|
| 93 |
+
progress=gr.Progress(track_tqdm=True)):
|
| 94 |
+
|
| 95 |
+
video = ""
|
| 96 |
+
if seed == -1:
|
| 97 |
+
seed = random.randint(0, MAX_SEED)
|
| 98 |
+
|
| 99 |
+
torch.manual_seed(seed)
|
| 100 |
+
|
| 101 |
+
os.makedirs(output_folder, exist_ok=True)
|
| 102 |
+
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
| 103 |
+
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
| 104 |
+
|
| 105 |
+
up_video = VideoData(
|
| 106 |
+
video_file=video_in,
|
| 107 |
+
height=height, width=width)
|
| 108 |
+
input_video = [up_video[i] for i in range(1, num_frames)]
|
| 109 |
+
|
| 110 |
+
video = pipe2(
|
| 111 |
+
prompt=prompt,
|
| 112 |
+
negative_prompt="verybadimagenegative_v1.3",
|
| 113 |
+
cfg_scale=3,
|
| 114 |
+
clip_skip=2,
|
| 115 |
+
controlnet_frames=input_video,
|
| 116 |
+
num_frames=len(input_video),
|
| 117 |
+
num_inference_steps=num_inference_steps,
|
| 118 |
+
height=height,
|
| 119 |
+
width=width,
|
| 120 |
+
animatediff_batch_size=animatediff_batch_size,
|
| 121 |
+
animatediff_stride=animatediff_stride,
|
| 122 |
+
unet_batch_size=8,
|
| 123 |
+
controlnet_batch_size=8,
|
| 124 |
+
vram_limit_level=0,
|
| 125 |
+
)
|
| 126 |
+
video = smoother(video)
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
save_video(video, video_path, fps=fps_id)
|
| 130 |
+
|
| 131 |
+
return video_path, seed
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
examples = [
|
| 135 |
+
['./walking.mp4', None, "Diffutoon", "A woman walking on the street"],
|
| 136 |
+
['./smilegirl.mp4', None, "Diffutoon", "A girl stand on the grass"],
|
| 137 |
+
['./working.mp4', None, "Diffutoon", "A woman is doing the dishes"],
|
| 138 |
+
[None, "./train.jpg", "ExVideo", ""],
|
| 139 |
+
[None, "./girl.webp", "ExVideo", ""],
|
| 140 |
+
[None, "./robo.jpg", "ExVideo", ""],
|
| 141 |
+
]
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
# Gradio Interface
|
| 145 |
+
|
| 146 |
+
with gr.Blocks(css=CSS, js=JS, theme="soft") as demo:
|
| 147 |
+
gr.HTML("<h1><center>Exvideo📽️Diffutoon</center></h1>")
|
| 148 |
+
gr.HTML("""
|
| 149 |
+
<p><center>Exvideo and Diffutoon video generation
|
| 150 |
+
<br><b>Update</b>: Output resize, Frames length control.
|
| 151 |
+
<br><b>Note</b>: ZeroGPU limited, Set the parameters appropriately.</center></p>
|
| 152 |
+
""")
|
| 153 |
+
with gr.Row():
|
| 154 |
+
video_in = gr.Video(label='Upload Video', height=600, scale=2)
|
| 155 |
+
image_in = gr.Image(label='Upload Image', height=600, scale=2, image_mode="RGB", type="filepath", visible=False)
|
| 156 |
+
video = gr.Video(label="Generated Video", height=600, scale=2)
|
| 157 |
+
with gr.Column(scale=1):
|
| 158 |
+
seed = gr.Slider(
|
| 159 |
+
label="Seed (-1 Random)",
|
| 160 |
+
minimum=-1,
|
| 161 |
+
maximum=MAX_SEED,
|
| 162 |
+
step=1,
|
| 163 |
+
value=-1,
|
| 164 |
+
)
|
| 165 |
+
num_inference_steps = gr.Slider(
|
| 166 |
+
label="Inference steps",
|
| 167 |
+
info="Inference steps",
|
| 168 |
+
step=1,
|
| 169 |
+
value=10,
|
| 170 |
+
minimum=1,
|
| 171 |
+
maximum=50,
|
| 172 |
+
)
|
| 173 |
+
num_frames = gr.Slider(
|
| 174 |
+
label="Num frames",
|
| 175 |
+
info="Output Frames",
|
| 176 |
+
step=1,
|
| 177 |
+
value=30,
|
| 178 |
+
minimum=1,
|
| 179 |
+
maximum=128,
|
| 180 |
+
)
|
| 181 |
+
with gr.Row():
|
| 182 |
+
height = gr.Slider(
|
| 183 |
+
label="Height",
|
| 184 |
+
step=8,
|
| 185 |
+
value=512,
|
| 186 |
+
minimum=256,
|
| 187 |
+
maximum=2560,
|
| 188 |
+
)
|
| 189 |
+
width = gr.Slider(
|
| 190 |
+
label="Width",
|
| 191 |
+
step=8,
|
| 192 |
+
value=512,
|
| 193 |
+
minimum=256,
|
| 194 |
+
maximum=2560,
|
| 195 |
+
)
|
| 196 |
+
with gr.Accordion("Diffutoon Options", open=False):
|
| 197 |
+
animatediff_batch_size = gr.Slider(
|
| 198 |
+
label="Animatediff batch size",
|
| 199 |
+
minimum=1,
|
| 200 |
+
maximum=50,
|
| 201 |
+
step=1,
|
| 202 |
+
value=32,
|
| 203 |
+
)
|
| 204 |
+
animatediff_stride = gr.Slider(
|
| 205 |
+
label="Animatediff stride",
|
| 206 |
+
minimum=1,
|
| 207 |
+
maximum=50,
|
| 208 |
+
step=1,
|
| 209 |
+
value=16,
|
| 210 |
+
)
|
| 211 |
+
fps_id = gr.Slider(
|
| 212 |
+
label="Frames per second",
|
| 213 |
+
info="The length of your video in seconds will be 25/fps",
|
| 214 |
+
value=6,
|
| 215 |
+
step=1,
|
| 216 |
+
minimum=5,
|
| 217 |
+
maximum=30,
|
| 218 |
+
)
|
| 219 |
+
prompt = gr.Textbox(label="Prompt", value="best quality")
|
| 220 |
+
with gr.Row():
|
| 221 |
+
submit_btn = gr.Button(value="Generate")
|
| 222 |
+
#stop_btn = gr.Button(value="Stop", variant="stop")
|
| 223 |
+
clear_btn = gr.ClearButton([video_in, image_in, seed, video])
|
| 224 |
+
|
| 225 |
+
gr.Examples(
|
| 226 |
+
examples=examples,
|
| 227 |
+
fn=generate,
|
| 228 |
+
inputs=[video_in, image_in, selected, prompt],
|
| 229 |
+
outputs=[video, seed],
|
| 230 |
+
cache_examples="lazy",
|
| 231 |
+
examples_per_page=4,
|
| 232 |
+
)
|
| 233 |
+
video_in.upload(update_frames, inputs=[video_in], outputs=[num_frames])
|
| 234 |
+
submit_event = submit_btn.click(fn=generate, inputs=[video_in, image_in, prompt, seed, num_inference_steps, num_frames, height, width, animatediff_batch_size, animatediff_stride, fps_id], outputs=[video, seed], api_name="video")
|
| 235 |
+
#stop_btn.click(fn=None, inputs=None, outputs=None, cancels=[submit_event])
|
| 236 |
+
|
| 237 |
+
demo.queue().launch()
|