Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import pickle
|
| 4 |
+
import numpy as np
|
| 5 |
+
from surprise import SVDpp
|
| 6 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 7 |
+
|
| 8 |
+
# --- Download Model from Kaggle ---
|
| 9 |
+
def download_kaggle_model():
|
| 10 |
+
kaggle_username = os.environ.get("KAGGLE_USERNAME")
|
| 11 |
+
kaggle_key = os.environ.get("KAGGLE_KEY")
|
| 12 |
+
if not kaggle_username or not kaggle_key:
|
| 13 |
+
raise ValueError("Set KAGGLE_USERNAME and KAGGLE_KEY as HF secrets!")
|
| 14 |
+
|
| 15 |
+
os.system("mkdir -p ~/.kaggle")
|
| 16 |
+
with open("/root/.kaggle/kaggle.json", "w") as f:
|
| 17 |
+
f.write(f'{{"username":"{kaggle_username}","key":"{kaggle_key}"}}')
|
| 18 |
+
os.chmod("/root/.kaggle/kaggle.json", 0o600)
|
| 19 |
+
|
| 20 |
+
# Download your Kaggle model
|
| 21 |
+
print("📥 Downloading model from Kaggle...")
|
| 22 |
+
os.system("kaggle datasets download -d <your-username>/<your-model-dataset> -p ./model --unzip")
|
| 23 |
+
|
| 24 |
+
# --- Load Models ---
|
| 25 |
+
def load_models():
|
| 26 |
+
with open("./model/svdpp_model.pkl", "rb") as f:
|
| 27 |
+
svdpp_model = pickle.load(f)
|
| 28 |
+
|
| 29 |
+
with open("./model/content_features.pkl", "rb") as f:
|
| 30 |
+
content_features = pickle.load(f)
|
| 31 |
+
|
| 32 |
+
with open("./model/mappings.pkl", "rb") as f:
|
| 33 |
+
mappings = pickle.load(f)
|
| 34 |
+
|
| 35 |
+
return svdpp_model, content_features, mappings
|
| 36 |
+
|
| 37 |
+
# --- Hybrid Prediction ---
|
| 38 |
+
def hybrid_predict(user_id, book_id, alpha=0.7):
|
| 39 |
+
try:
|
| 40 |
+
uid = user_encoder.transform([user_id])[0]
|
| 41 |
+
iid = item_encoder.transform([book_id])[0]
|
| 42 |
+
except:
|
| 43 |
+
return "Unknown user_id or book_id"
|
| 44 |
+
|
| 45 |
+
svd_pred = svdpp_model.predict(uid, iid).est
|
| 46 |
+
|
| 47 |
+
user_liked = np.where(svdpp_model.trainset.ur[uid])[0]
|
| 48 |
+
if len(user_liked) == 0:
|
| 49 |
+
content_score = 0
|
| 50 |
+
else:
|
| 51 |
+
similarities = cosine_similarity(content_features[iid], content_features[user_liked])
|
| 52 |
+
content_score = np.mean(similarities)
|
| 53 |
+
|
| 54 |
+
hybrid_score = alpha * svd_pred + (1 - alpha) * content_score * 5
|
| 55 |
+
return round(hybrid_score, 2)
|
| 56 |
+
|
| 57 |
+
# --- Gradio Interface ---
|
| 58 |
+
def recommend(user_id, book_id, alpha=0.7):
|
| 59 |
+
return f"Predicted Rating: {hybrid_predict(user_id, book_id, alpha)}"
|
| 60 |
+
|
| 61 |
+
# Download model from Kaggle and load
|
| 62 |
+
download_kaggle_model()
|
| 63 |
+
svdpp_model, content_features, mappings = load_models()
|
| 64 |
+
user_encoder = mappings["user_encoder"]
|
| 65 |
+
item_encoder = mappings["item_encoder"]
|
| 66 |
+
|
| 67 |
+
# Start Gradio app
|
| 68 |
+
demo = gr.Interface(
|
| 69 |
+
fn=recommend,
|
| 70 |
+
inputs=[
|
| 71 |
+
gr.Textbox(label="User ID"),
|
| 72 |
+
gr.Textbox(label="Book ID"),
|
| 73 |
+
gr.Slider(0, 1, value=0.7, step=0.1, label="Hybrid Weight (alpha)")
|
| 74 |
+
],
|
| 75 |
+
outputs="text",
|
| 76 |
+
title="📚 Hybrid Book Recommender",
|
| 77 |
+
description="Enter a user_id and book_id to get a predicted rating using a Hybrid SVD++ and Content-based model."
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
demo.launch()
|