khalednabawi11 commited on
Commit
f3f30b0
Β·
verified Β·
1 Parent(s): f7441e7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md CHANGED
@@ -9,4 +9,86 @@ app_file: app.py
9
  pinned: false
10
  ---
11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
9
  pinned: false
10
  ---
11
 
12
+
13
+ # Hybrid Book Recommender System
14
+
15
+ This is a **Hybrid Recommendation System** deployed on Hugging Face Spaces using **Gradio**.
16
+ It combines **Collaborative Filtering (SVD++)** and **Content-Based Filtering** to recommend books to users, even if they are new to the system (cold-start support).
17
+
18
+ πŸ”— **Live Demo**: [Check it out on Hugging Face Spaces](https://huggingface.co/spaces/khalednabawi11/Book-Recommender-System)
19
+
20
+ ---
21
+
22
+ ## Features
23
+
24
+ - **Hybrid Model**: Combines collaborative filtering and content-based filtering for more accurate recommendations.
25
+ - **Cold Start Ready**: Recommends top-rated books to new users with no prior ratings.
26
+ - **Book Covers**: Shows book covers alongside titles for a more visual experience.
27
+ - **Gradio**: Backend runs on FastAPI, frontend built with Gradio for an interactive experience.
28
+ - Model loaded from Kaggle Models using `kagglehub`.
29
+
30
+ ---
31
+
32
+ ## How It Works
33
+
34
+ 1. **For registered users**:
35
+ - Predicts ratings for books the user hasn’t rated yet.
36
+ - Shows the top N books sorted by predicted rating.
37
+
38
+ 2. **For new users**:
39
+ - Recommends globally top-rated books as a fallback (cold start).
40
+
41
+ 3. **Visual Output**:
42
+ - Book title, predicted rating, and cover image in a neat table.
43
+
44
+ ---
45
+
46
+ ## Project Structure
47
+
48
+ ---
49
+ β”œβ”€β”€ app.py # Main Gradio app
50
+ β”œβ”€β”€ requirements.txt # Dependencies
51
+ β”œβ”€β”€ README.md
52
+ β”œβ”€β”€ books-recomendation-system-0.ipynb => Model Development Notebook
53
+ ---
54
+
55
+
56
+
57
+
58
+ ## Setup Locally
59
+
60
+ Clone the repo and run:
61
+
62
+ ```bash
63
+ pip install -r requirements.txt
64
+ python app.py
65
+ ```
66
+
67
+ ## Dependencies
68
+
69
+ ```
70
+ - gradio
71
+ - pandas
72
+ - numpy
73
+ - scikit-learn
74
+ - kagglehub
75
+ - surprise (for SVD++ model)
76
+ - fastapi
77
+ - uvicorn
78
+ ```
79
+
80
+ ## Model Details
81
+
82
+ - Collaborative Filtering: SVD++ trained on user-item ratings.
83
+ - Content-Based Filtering: Uses book metadata (title, genres, etc.).
84
+ - Hybrid approach balances both for better personalization.
85
+
86
+
87
+ ## Deployment
88
+ ```
89
+ This app is deployed on Hugging Face Spaces using Gradio UI and loads the model directly from Kaggle Models via kagglehub.
90
+ ```
91
+
92
+
93
+
94
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference