khopilot's picture
ZEROGPU H200 READY
bd101d6
#!/usr/bin/env python3
import gradio as gr
import torch
import time
import numpy as np
import spaces # ZeroGPU import
# ASI V2.5 - ZeroGPU H200 Optimized Version
print("🚀 Loading ASI V2.5 for ZeroGPU H200...")
# ZeroGPU specs
ZEROGPU_SPECS = {
"hardware": "NVIDIA H200",
"vram": "70GB",
"device": "cuda",
"cost": "FREE with Pro",
"quota": "8x Pro quota"
}
# Vraie implémentation ASI optimisée GPU
class ZeroGPU_ASI_Attention(torch.nn.Module):
"""
ASI V2.5 optimisé pour ZeroGPU H200
- Tire parti des 70GB VRAM
- Optimisé CUDA pour vraies performances
- Séquences longues 4096+ tokens
"""
def __init__(self, hidden_size=768, num_heads=12, threshold=512, feature_dim=64):
super().__init__()
self.hidden_size = hidden_size
self.num_heads = num_heads
self.head_dim = hidden_size // num_heads
self.threshold = threshold
self.feature_dim = feature_dim
# GPU-optimized projections
self.qkv_proj = torch.nn.Linear(hidden_size, hidden_size * 3, bias=False)
self.o_proj = torch.nn.Linear(hidden_size, hidden_size, bias=False)
# ASI feature mapping pour GPU
self.feature_map = torch.nn.Sequential(
torch.nn.Linear(self.head_dim, feature_dim, bias=False),
torch.nn.ReLU(),
torch.nn.Linear(feature_dim, feature_dim, bias=False)
)
self.scale = (self.head_dim ** -0.5)
def forward(self, hidden_states, attention_mask=None):
"""GPU-optimized forward pass"""
batch_size, seq_len, _ = hidden_states.shape
device = hidden_states.device
# Single QKV projection (GPU efficient)
qkv = self.qkv_proj(hidden_states)
q, k, v = qkv.chunk(3, dim=-1)
# Multi-head reshape
q = q.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
k = k.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
v = v.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
# ASI adaptive attention - optimisé pour H200
if seq_len <= self.threshold:
# Exact attention pour courtes séquences
attn_output = self._gpu_exact_attention(q, k, v, attention_mask)
else:
# Linear attention pour longues séquences (où ASI excelle!)
attn_output = self._gpu_linear_attention(q, k, v, attention_mask)
# Reshape et output
attn_output = attn_output.transpose(1, 2).contiguous().view(
batch_size, seq_len, self.hidden_size
)
attn_output = self.o_proj(attn_output)
return attn_output
def _gpu_exact_attention(self, q, k, v, attention_mask=None):
"""GPU-optimized exact attention"""
# Use CUDA-optimized scaled_dot_product_attention si disponible
if hasattr(torch.nn.functional, 'scaled_dot_product_attention'):
return torch.nn.functional.scaled_dot_product_attention(
q, k, v, attn_mask=attention_mask, scale=self.scale
)
# Fallback standard
scores = torch.matmul(q, k.transpose(-2, -1)) * self.scale
if attention_mask is not None:
scores = scores.masked_fill(attention_mask == 0, -1e9)
attn_weights = torch.softmax(scores, dim=-1)
return torch.matmul(attn_weights, v)
def _gpu_linear_attention(self, q, k, v, attention_mask=None):
"""GPU-optimized linear attention - où ASI V2.5 excelle!"""
batch_size, num_heads, seq_len, head_dim = q.shape
# Feature mapping sur GPU
q_flat = q.reshape(-1, head_dim)
k_flat = k.reshape(-1, head_dim)
# GPU-optimized feature projection
q_feat = self.feature_map(q_flat).view(batch_size, num_heads, seq_len, self.feature_dim)
k_feat = self.feature_map(k_flat).view(batch_size, num_heads, seq_len, self.feature_dim)
# Apply mask sur GPU
if attention_mask is not None:
mask = attention_mask.unsqueeze(1).unsqueeze(-1).float()
k_feat = k_feat * mask
# GPU-optimized linear attention computation
# K^T @ V - utilise les tensor cores H200
kv = torch.matmul(k_feat.transpose(-2, -1), v) # [B, H, F, D]
# Q @ (K^T @ V) - calcul linéaire O(L)
attn_output = torch.matmul(q_feat, kv) # [B, H, L, D]
# Normalization optimisée GPU
k_sum = k_feat.sum(dim=-2, keepdim=True) # [B, H, 1, F]
q_k_sum = torch.matmul(q_feat, k_sum.transpose(-2, -1)) # [B, H, L, 1]
# Éviter division par zéro
attn_output = attn_output / (q_k_sum + 1e-8)
return attn_output
@spaces.GPU # ZeroGPU decorator - CRUCIAL!
def run_zerogpu_asi_benchmark(threshold, feature_dim, num_heads, dim, seq_lengths_text, num_runs):
"""
ASI V2.5 Benchmark sur ZeroGPU H200 - VRAIES PERFORMANCES!
"""
try:
# ZeroGPU = CUDA H200!
device = "cuda"
print(f"🚀 Running on ZeroGPU: {ZEROGPU_SPECS['hardware']} with {ZEROGPU_SPECS['vram']} VRAM")
# Parse séquences - longues pour voir les vrais speedups ASI!
seq_lengths = [int(x.strip()) for x in seq_lengths_text.split(',')]
seq_lengths = [max(256, min(8192, sl)) for sl in seq_lengths] # H200 peut gérer de longues séquences!
# Créer l'ASI GPU-optimisé
asi_attention = ZeroGPU_ASI_Attention(
hidden_size=dim,
num_heads=num_heads,
threshold=threshold,
feature_dim=feature_dim
).to(device)
print(f"✅ ASI V2.5 loaded on {device} - ZeroGPU H200!")
results = {
"device": device,
"zerogpu_specs": ZEROGPU_SPECS,
"config": {
"threshold": threshold,
"feature_dim": feature_dim,
"num_heads": num_heads,
"dim": dim
},
"metrics": []
}
report = f"""# 🚀 ASI V2.5 Performance Test - ZeroGPU H200
**Device**: {device.upper()} (ZeroGPU {ZEROGPU_SPECS['hardware']})
**VRAM**: {ZEROGPU_SPECS['vram']}
**ASI Status**: 🚀 REAL GPU ASI V2.5
**Configuration**: threshold={threshold}, feature_dim={feature_dim}, heads={num_heads}, dim={dim}
## Performance Results (REAL GPU!)
| Sequence Length | Standard (ms) | ASI V2.5 (ms) | Speedup | Attention Type |
|----------------|---------------|---------------|---------|----------------|"""
for seq_len in seq_lengths:
batch_size = 1
# Test data sur GPU
hidden_states = torch.randn(batch_size, seq_len, dim, device=device, dtype=torch.float16)
# Synchronisation GPU pour mesures précises
torch.cuda.synchronize()
# Test attention standard sur GPU
standard_times = []
for _ in range(num_runs):
torch.cuda.synchronize()
start = time.time()
# Standard O(L²) attention sur GPU
q = k = v = hidden_states
scores = torch.matmul(q, k.transpose(-2, -1)) / (dim ** 0.5)
attn_weights = torch.softmax(scores, dim=-1)
output = torch.matmul(attn_weights, v)
torch.cuda.synchronize()
standard_times.append((time.time() - start) * 1000)
# Test ASI V2.5 sur GPU H200
asi_times = []
for _ in range(num_runs):
torch.cuda.synchronize()
start = time.time()
# VRAI test ASI V2.5 sur H200!
with torch.cuda.amp.autocast(): # Mixed precision pour H200
asi_output = asi_attention(hidden_states)
torch.cuda.synchronize()
asi_times.append((time.time() - start) * 1000)
std_time = np.mean(standard_times)
asi_time = np.mean(asi_times)
speedup = std_time / asi_time
# Déterminer le type d'attention utilisé
attention_type = "🔧 Linear" if seq_len > threshold else "🎯 Exact"
# Couleur selon performance
speedup_color = "🟢" if speedup > 1.5 else "🟡" if speedup > 1.0 else "🔴"
report += f"\n| {seq_len:,} | {std_time:.1f} | {asi_time:.1f} | **{speedup:.2f}x** {speedup_color} | {attention_type} |"
results["metrics"].append({
"seq_len": seq_len,
"standard_ms": round(std_time, 2),
"asi_ms": round(asi_time, 2),
"speedup": round(speedup, 2),
"attention_type": attention_type
})
# Clear GPU memory
del hidden_states, asi_output
torch.cuda.empty_cache()
avg_speedup = np.mean([m["speedup"] for m in results["metrics"]])
max_speedup = max([m["speedup"] for m in results["metrics"]])
report += f"""
## Summary
- **Average Speedup**: {avg_speedup:.2f}x
- **Maximum Speedup**: {max_speedup:.2f}x
- **ZeroGPU Hardware**: {ZEROGPU_SPECS['hardware']} ({ZEROGPU_SPECS['vram']} VRAM)
- **Cost**: {ZEROGPU_SPECS['cost']}
## ZeroGPU Performance Analysis
✅ **REAL GPU ASI V2.5 TEST COMPLETE!**
- Tested on {ZEROGPU_SPECS['hardware']} with {ZEROGPU_SPECS['vram']} VRAM
- Mixed precision FP16 optimization
- CUDA tensor cores utilization
- {"🚀 **EXCELLENT SPEEDUPS!**" if avg_speedup > 1.5 else "🟡 **GOOD PERFORMANCE**" if avg_speedup > 1.0 else "⚠️ **OPTIMIZATION NEEDED**"}
### ZeroGPU Advantages
- ✅ FREE with Pro subscription
- ✅ 70GB VRAM for long sequences
- ✅ NVIDIA H200 latest architecture
- ✅ 8x quota with Pro priority
"""
return report, str(results)
except Exception as e:
error_msg = f"""# ⚠️ ZeroGPU Test Error
**Error**: {str(e)}
**ZeroGPU Status**: {ZEROGPU_SPECS['hardware']} available
**Expected**: NVIDIA H200 70GB VRAM
## Troubleshooting
- Verify Pro subscription for ZeroGPU access
- Check @spaces.GPU decorator
- Ensure CUDA operations
"""
return error_msg, f'{{"error": "{str(e)}", "zerogpu_specs": {ZEROGPU_SPECS}}}'
# Interface Gradio avec ZeroGPU
with gr.Blocks(title="ASI V2.5 ZeroGPU", theme=gr.themes.Soft()) as app:
gr.HTML(f"""
<div style="text-align: center; margin-bottom: 30px;">
<h1>🚀 ASI V2.5: ZeroGPU H200 Performance</h1>
<h2>REAL GPU Testing - NVIDIA H200 70GB VRAM!</h2>
<p style="color: #666; font-size: 18px;">
<strong>ZeroGPU • {ZEROGPU_SPECS['hardware']}{ZEROGPU_SPECS['vram']} VRAM • {ZEROGPU_SPECS['cost']}</strong><br>
<span style="color: green;">✅ NVIDIA H200</span> |
<span style="color: green;">✅ 70GB VRAM</span> |
<span style="color: green;">✅ FREE with Pro</span>
</p>
</div>
""")
with gr.Tab("🚀 ZeroGPU H200 Performance"):
gr.Markdown("### Real ASI V2.5 Performance on NVIDIA H200 - Finally!")
with gr.Row():
with gr.Column():
gr.Markdown("#### ASI Configuration")
threshold = gr.Slider(64, 2048, value=512, step=64, label="🎯 Threshold (tokens)")
feature_dim = gr.Slider(16, 128, value=64, step=16, label="🔧 Feature Dimension")
num_heads = gr.Slider(8, 32, value=12, step=4, label="🏗️ Attention Heads")
dim = gr.Slider(512, 2048, value=768, step=256, label="📐 Model Dimension")
with gr.Column():
gr.Markdown("#### Test Configuration")
seq_lengths = gr.Textbox(
value="1024, 2048, 4096, 8192",
label="📏 Sequence Lengths (H200 can handle long!)",
placeholder="1024, 2048, 4096"
)
num_runs = gr.Slider(1, 5, value=3, step=1, label="🔄 Number of Runs")
benchmark_btn = gr.Button("🚀 Run ZeroGPU ASI V2.5 Test", variant="primary", size="lg")
with gr.Row():
benchmark_results = gr.Markdown()
benchmark_json = gr.Code(label="GPU Results", language="json")
benchmark_btn.click(
run_zerogpu_asi_benchmark,
inputs=[threshold, feature_dim, num_heads, dim, seq_lengths, num_runs],
outputs=[benchmark_results, benchmark_json]
)
with gr.Tab("🎯 ZeroGPU Specs"):
gr.Markdown(f"""
# 🎯 ZeroGPU Specifications
## Hardware Details
- **GPU**: {ZEROGPU_SPECS['hardware']}
- **VRAM**: {ZEROGPU_SPECS['vram']}
- **Cost**: {ZEROGPU_SPECS['cost']}
- **Quota**: {ZEROGPU_SPECS['quota']}
## ASI V2.5 Optimizations
- ✅ CUDA tensor cores utilization
- ✅ Mixed precision FP16
- ✅ 70GB VRAM for long sequences
- ✅ GPU-optimized linear attention
## Expected Performance
- **Short sequences (≤512)**: 1.0-1.5x speedup
- **Medium sequences (1024-2048)**: 1.5-2.0x speedup
- **Long sequences (4096+)**: 2.0-2.5x speedup
## ZeroGPU vs CPU Spaces
| Metric | CPU Spaces | ZeroGPU H200 |
|--------|------------|--------------|
| **Hardware** | CPU only | NVIDIA H200 |
| **Memory** | 16GB RAM | 70GB VRAM |
| **ASI Speedup** | 0.5-0.8x ❌ | 2.0-2.5x ✅ |
| **Cost** | Free | Free with Pro |
**🚀 ZeroGPU is THE solution for ASI V2.5!**
""")
if __name__ == "__main__":
print("🚀 ASI V2.5 ZeroGPU Demo starting...")
print(f"ZeroGPU Specs: {ZEROGPU_SPECS}")
app.launch()