Spaces:
Sleeping
Sleeping
Upload requirements.txt with huggingface_hub
Browse files- requirements.txt +9 -483
requirements.txt
CHANGED
|
@@ -1,483 +1,9 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
import numpy as np
|
| 11 |
-
import matplotlib
|
| 12 |
-
matplotlib.use('Agg')
|
| 13 |
-
import matplotlib.pyplot as plt
|
| 14 |
-
import io
|
| 15 |
-
from typing import List, Dict, Tuple
|
| 16 |
-
import traceback
|
| 17 |
-
|
| 18 |
-
# Dataset functionality
|
| 19 |
-
try:
|
| 20 |
-
from datasets import load_dataset
|
| 21 |
-
import transformers
|
| 22 |
-
DATASETS_AVAILABLE = True
|
| 23 |
-
print("✅ Datasets library imported successfully")
|
| 24 |
-
except ImportError as e:
|
| 25 |
-
print(f"⚠️ Datasets library not available: {e}")
|
| 26 |
-
DATASETS_AVAILABLE = False
|
| 27 |
-
|
| 28 |
-
# ASI V2.5 import with robust error handling
|
| 29 |
-
ASI_AVAILABLE = False
|
| 30 |
-
ASI_ERROR = None
|
| 31 |
-
try:
|
| 32 |
-
from asi_v25 import create_asi_attention, get_performance_summary, VALIDATED_RESULTS
|
| 33 |
-
ASI_AVAILABLE = True
|
| 34 |
-
print("✅ ASI V2.5 imported successfully - Full functionality enabled!")
|
| 35 |
-
except ImportError as e:
|
| 36 |
-
ASI_ERROR = str(e)
|
| 37 |
-
print(f"⚠️ ASI V2.5 not available: {e}")
|
| 38 |
-
VALIDATED_RESULTS = {
|
| 39 |
-
"best_speedup": 2.44,
|
| 40 |
-
"average_speedup": 2.38,
|
| 41 |
-
"layer_coverage": 91.7,
|
| 42 |
-
"throughput_tokens_per_sec": 18097,
|
| 43 |
-
"max_sequence_length": 4096,
|
| 44 |
-
"architecture_tested": "Longformer-base-4096"
|
| 45 |
-
}
|
| 46 |
-
|
| 47 |
-
class ASIDemo:
|
| 48 |
-
def __init__(self):
|
| 49 |
-
try:
|
| 50 |
-
self.device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
| 51 |
-
self.results_history = []
|
| 52 |
-
print(f"🚀 ASIDemo initialized on device: {self.device}")
|
| 53 |
-
except Exception as e:
|
| 54 |
-
print(f"❌ Error initializing ASIDemo: {e}")
|
| 55 |
-
self.device = "cpu"
|
| 56 |
-
self.results_history = []
|
| 57 |
-
|
| 58 |
-
def create_demo_attention(self, use_asi=True, seq_len=1024):
|
| 59 |
-
"""Create attention layers for comparison"""
|
| 60 |
-
try:
|
| 61 |
-
dim = 512
|
| 62 |
-
num_heads = 8
|
| 63 |
-
|
| 64 |
-
if use_asi and ASI_AVAILABLE:
|
| 65 |
-
return create_asi_attention(dim=dim, num_heads=num_heads, use_extreme=True)
|
| 66 |
-
else:
|
| 67 |
-
return torch.nn.MultiheadAttention(dim, num_heads, batch_first=True)
|
| 68 |
-
except Exception as e:
|
| 69 |
-
print(f"❌ Error creating attention: {e}")
|
| 70 |
-
return torch.nn.MultiheadAttention(512, 8, batch_first=True)
|
| 71 |
-
|
| 72 |
-
def benchmark_attention(self, seq_lengths=[512, 1024, 2048], runs=3):
|
| 73 |
-
"""Benchmark ASI vs Standard attention"""
|
| 74 |
-
results = []
|
| 75 |
-
|
| 76 |
-
try:
|
| 77 |
-
for seq_len in seq_lengths:
|
| 78 |
-
batch_size = 1
|
| 79 |
-
dim = 512
|
| 80 |
-
|
| 81 |
-
x = torch.randn(batch_size, seq_len, dim, device=self.device)
|
| 82 |
-
|
| 83 |
-
# Standard attention timing
|
| 84 |
-
standard_times = []
|
| 85 |
-
for _ in range(runs):
|
| 86 |
-
start_time = time.time()
|
| 87 |
-
_ = torch.matmul(x, x.transpose(-2, -1))
|
| 88 |
-
if torch.cuda.is_available():
|
| 89 |
-
torch.cuda.synchronize()
|
| 90 |
-
standard_times.append(time.time() - start_time)
|
| 91 |
-
|
| 92 |
-
# ASI attention timing
|
| 93 |
-
asi_times = []
|
| 94 |
-
if ASI_AVAILABLE:
|
| 95 |
-
try:
|
| 96 |
-
asi_attn = self.create_demo_attention(use_asi=True, seq_len=seq_len)
|
| 97 |
-
asi_attn = asi_attn.to(self.device)
|
| 98 |
-
|
| 99 |
-
for _ in range(runs):
|
| 100 |
-
start_time = time.time()
|
| 101 |
-
with torch.no_grad():
|
| 102 |
-
_ = asi_attn(x, x, x)
|
| 103 |
-
if torch.cuda.is_available():
|
| 104 |
-
torch.cuda.synchronize()
|
| 105 |
-
asi_times.append(time.time() - start_time)
|
| 106 |
-
except Exception as e:
|
| 107 |
-
print(f"⚠️ ASI benchmark error: {e}")
|
| 108 |
-
asi_times = [t / 2.44 for t in standard_times]
|
| 109 |
-
else:
|
| 110 |
-
asi_times = [t / 2.44 for t in standard_times]
|
| 111 |
-
|
| 112 |
-
avg_standard = np.mean(standard_times) * 1000
|
| 113 |
-
avg_asi = np.mean(asi_times) * 1000
|
| 114 |
-
speedup = avg_standard / avg_asi if avg_asi > 0 else 2.44
|
| 115 |
-
|
| 116 |
-
results.append({
|
| 117 |
-
'seq_len': seq_len,
|
| 118 |
-
'standard_ms': avg_standard,
|
| 119 |
-
'asi_ms': avg_asi,
|
| 120 |
-
'speedup': speedup,
|
| 121 |
-
'throughput_asi': seq_len / (avg_asi / 1000) if avg_asi > 0 else seq_len / 0.041
|
| 122 |
-
})
|
| 123 |
-
|
| 124 |
-
except Exception as e:
|
| 125 |
-
print(f"❌ Benchmark error: {e}")
|
| 126 |
-
for seq_len in seq_lengths:
|
| 127 |
-
results.append({
|
| 128 |
-
'seq_len': seq_len,
|
| 129 |
-
'standard_ms': 100.0,
|
| 130 |
-
'asi_ms': 41.0,
|
| 131 |
-
'speedup': 2.44,
|
| 132 |
-
'throughput_asi': seq_len / 0.041
|
| 133 |
-
})
|
| 134 |
-
|
| 135 |
-
return results
|
| 136 |
-
|
| 137 |
-
def create_performance_plot(self, results):
|
| 138 |
-
"""Create performance comparison plot"""
|
| 139 |
-
try:
|
| 140 |
-
seq_lens = [r['seq_len'] for r in results]
|
| 141 |
-
standard_times = [r['standard_ms'] for r in results]
|
| 142 |
-
asi_times = [r['asi_ms'] for r in results]
|
| 143 |
-
speedups = [r['speedup'] for r in results]
|
| 144 |
-
|
| 145 |
-
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
|
| 146 |
-
|
| 147 |
-
# Timing comparison
|
| 148 |
-
ax1.plot(seq_lens, standard_times, 'b-o', label='Standard Attention', linewidth=2)
|
| 149 |
-
ax1.plot(seq_lens, asi_times, 'r-o', label='ASI V2.5', linewidth=2)
|
| 150 |
-
ax1.set_xlabel('Sequence Length')
|
| 151 |
-
ax1.set_ylabel('Time (ms)')
|
| 152 |
-
ax1.set_title('Attention Timing Comparison')
|
| 153 |
-
ax1.legend()
|
| 154 |
-
ax1.grid(True, alpha=0.3)
|
| 155 |
-
ax1.set_yscale('log')
|
| 156 |
-
|
| 157 |
-
# Speedup chart
|
| 158 |
-
colors = ['#ff6b6b', '#4ecdc4', '#45b7d1', '#f9ca24', '#f0932b']
|
| 159 |
-
ax2.bar(range(len(seq_lens)), speedups, color=colors[:len(seq_lens)])
|
| 160 |
-
ax2.set_xlabel('Sequence Length')
|
| 161 |
-
ax2.set_ylabel('Speedup (x)')
|
| 162 |
-
ax2.set_title('ASI V2.5 Speedup')
|
| 163 |
-
ax2.set_xticks(range(len(seq_lens)))
|
| 164 |
-
ax2.set_xticklabels([f'{sl}' for sl in seq_lens])
|
| 165 |
-
ax2.grid(True, alpha=0.3)
|
| 166 |
-
|
| 167 |
-
for i, speedup in enumerate(speedups):
|
| 168 |
-
ax2.annotate(f'{speedup:.2f}x', (i, speedup), ha='center', va='bottom', fontweight='bold')
|
| 169 |
-
|
| 170 |
-
plt.tight_layout()
|
| 171 |
-
buffer = io.BytesIO()
|
| 172 |
-
plt.savefig(buffer, format='png', dpi=150, bbox_inches='tight')
|
| 173 |
-
buffer.seek(0)
|
| 174 |
-
plt.close()
|
| 175 |
-
return buffer.getvalue()
|
| 176 |
-
|
| 177 |
-
except Exception as e:
|
| 178 |
-
print(f"❌ Plot creation error: {e}")
|
| 179 |
-
fig, ax = plt.subplots(figsize=(6, 4))
|
| 180 |
-
ax.text(0.5, 0.5, f'Plot Error: {str(e)}', ha='center', va='center')
|
| 181 |
-
buffer = io.BytesIO()
|
| 182 |
-
plt.savefig(buffer, format='png')
|
| 183 |
-
plt.close()
|
| 184 |
-
return buffer.getvalue()
|
| 185 |
-
|
| 186 |
-
# Global demo instance
|
| 187 |
-
demo_instance = None
|
| 188 |
-
|
| 189 |
-
def get_demo_instance():
|
| 190 |
-
global demo_instance
|
| 191 |
-
if demo_instance is None:
|
| 192 |
-
demo_instance = ASIDemo()
|
| 193 |
-
return demo_instance
|
| 194 |
-
|
| 195 |
-
def test_dataset_processing(dataset_url: str, sample_size: int = 100):
|
| 196 |
-
"""Test ASI performance on HuggingFace dataset"""
|
| 197 |
-
try:
|
| 198 |
-
if not DATASETS_AVAILABLE:
|
| 199 |
-
return "❌ Datasets library not available", None
|
| 200 |
-
|
| 201 |
-
# Extract dataset path from URL
|
| 202 |
-
if "huggingface.co/datasets/" in dataset_url:
|
| 203 |
-
dataset_path = dataset_url.split("huggingface.co/datasets/")[-1]
|
| 204 |
-
else:
|
| 205 |
-
dataset_path = dataset_url
|
| 206 |
-
|
| 207 |
-
print(f"🔍 Loading dataset: {dataset_path}")
|
| 208 |
-
|
| 209 |
-
# Load dataset
|
| 210 |
-
dataset = load_dataset(dataset_path, split='train', streaming=True)
|
| 211 |
-
|
| 212 |
-
# Sample data
|
| 213 |
-
samples = []
|
| 214 |
-
for i, item in enumerate(dataset):
|
| 215 |
-
if i >= sample_size:
|
| 216 |
-
break
|
| 217 |
-
samples.append(item)
|
| 218 |
-
|
| 219 |
-
# Analyze text fields
|
| 220 |
-
text_fields = []
|
| 221 |
-
if samples:
|
| 222 |
-
for key, value in samples[0].items():
|
| 223 |
-
if isinstance(value, str) and len(value) > 50:
|
| 224 |
-
text_fields.append(key)
|
| 225 |
-
|
| 226 |
-
# Process with ASI simulation
|
| 227 |
-
demo = get_demo_instance()
|
| 228 |
-
|
| 229 |
-
# Simulate processing on different text lengths
|
| 230 |
-
text_lengths = []
|
| 231 |
-
for sample in samples:
|
| 232 |
-
for field in text_fields:
|
| 233 |
-
if field in sample:
|
| 234 |
-
text_lengths.append(len(sample[field].split()))
|
| 235 |
-
|
| 236 |
-
if not text_lengths:
|
| 237 |
-
return "❌ No suitable text fields found in dataset", None
|
| 238 |
-
|
| 239 |
-
# Group by length ranges for analysis
|
| 240 |
-
length_ranges = {
|
| 241 |
-
"Short (1-128)": [l for l in text_lengths if 1 <= l <= 128],
|
| 242 |
-
"Medium (129-512)": [l for l in text_lengths if 129 <= l <= 512],
|
| 243 |
-
"Long (513-2048)": [l for l in text_lengths if 513 <= l <= 2048],
|
| 244 |
-
"Very Long (2049+)": [l for l in text_lengths if l > 2048]
|
| 245 |
-
}
|
| 246 |
-
|
| 247 |
-
# Benchmark on representative lengths
|
| 248 |
-
test_lengths = []
|
| 249 |
-
for range_name, lengths in length_ranges.items():
|
| 250 |
-
if lengths:
|
| 251 |
-
avg_len = int(np.mean(lengths))
|
| 252 |
-
test_lengths.append(min(avg_len, 2048)) # Cap at 2048 for demo
|
| 253 |
-
|
| 254 |
-
if test_lengths:
|
| 255 |
-
results = demo.benchmark_attention(test_lengths, runs=2)
|
| 256 |
-
plot_data = demo.create_performance_plot(results)
|
| 257 |
-
else:
|
| 258 |
-
results = []
|
| 259 |
-
plot_data = None
|
| 260 |
-
|
| 261 |
-
# Create analysis report
|
| 262 |
-
report = f"""
|
| 263 |
-
# 📊 Dataset Analysis: {dataset_path}
|
| 264 |
-
|
| 265 |
-
## Dataset Overview
|
| 266 |
-
- **Samples analyzed**: {len(samples)}
|
| 267 |
-
- **Text fields found**: {text_fields}
|
| 268 |
-
- **Text length distribution**:
|
| 269 |
-
"""
|
| 270 |
-
|
| 271 |
-
for range_name, lengths in length_ranges.items():
|
| 272 |
-
if lengths:
|
| 273 |
-
report += f" - {range_name}: {len(lengths)} samples (avg: {np.mean(lengths):.1f} words)\n"
|
| 274 |
-
|
| 275 |
-
if results:
|
| 276 |
-
report += f"""
|
| 277 |
-
## ASI V2.5 Performance on Dataset
|
| 278 |
-
|
| 279 |
-
| Length Range | ASI Time (ms) | Speedup | Throughput |
|
| 280 |
-
|-------------|---------------|---------|------------|
|
| 281 |
-
"""
|
| 282 |
-
for r in results:
|
| 283 |
-
report += f"| {r['seq_len']} tokens | {r['asi_ms']:.1f} | {r['speedup']:.2f}x | {r['throughput_asi']:,.0f} tok/s |\n"
|
| 284 |
-
|
| 285 |
-
avg_speedup = np.mean([r['speedup'] for r in results])
|
| 286 |
-
report += f"\n**Average Speedup on Dataset**: {avg_speedup:.2f}x"
|
| 287 |
-
|
| 288 |
-
return report, plot_data
|
| 289 |
-
|
| 290 |
-
except Exception as e:
|
| 291 |
-
error_msg = f"❌ Error processing dataset: {str(e)}\n\n"
|
| 292 |
-
error_msg += f"**Traceback**:\n```\n{traceback.format_exc()}\n```"
|
| 293 |
-
return error_msg, None
|
| 294 |
-
|
| 295 |
-
def run_benchmark(seq_lengths_text, num_runs):
|
| 296 |
-
"""Run live benchmark"""
|
| 297 |
-
try:
|
| 298 |
-
demo = get_demo_instance()
|
| 299 |
-
seq_lengths = [int(x.strip()) for x in seq_lengths_text.split(',')]
|
| 300 |
-
seq_lengths = [max(64, min(4096, sl)) for sl in seq_lengths]
|
| 301 |
-
|
| 302 |
-
results = demo.benchmark_attention(seq_lengths, runs=max(1, min(5, num_runs)))
|
| 303 |
-
|
| 304 |
-
summary = "🚀 **ASI V2.5 Performance Results**\n\n"
|
| 305 |
-
summary += f"**Device**: {demo.device.upper()}\n"
|
| 306 |
-
summary += f"**ASI Status**: {'✅ Available' if ASI_AVAILABLE else '⚠️ Demo Mode'}\n"
|
| 307 |
-
summary += f"**Validated Best Speedup**: {VALIDATED_RESULTS['best_speedup']}x\n\n"
|
| 308 |
-
|
| 309 |
-
summary += "| Sequence Length | Standard (ms) | ASI V2.5 (ms) | Speedup | Throughput ASI |\n"
|
| 310 |
-
summary += "|----------------|---------------|---------------|---------|----------------|\n"
|
| 311 |
-
|
| 312 |
-
for r in results:
|
| 313 |
-
summary += f"| {r['seq_len']:,} | {r['standard_ms']:.1f} | {r['asi_ms']:.1f} | {r['speedup']:.2f}x | {r['throughput_asi']:,.0f} tok/s |\n"
|
| 314 |
-
|
| 315 |
-
avg_speedup = np.mean([r['speedup'] for r in results])
|
| 316 |
-
summary += f"\n**Average Speedup**: {avg_speedup:.2f}x\n"
|
| 317 |
-
summary += f"**Layer Coverage**: {VALIDATED_RESULTS['layer_coverage']}%\n"
|
| 318 |
-
|
| 319 |
-
plot_image = demo.create_performance_plot(results)
|
| 320 |
-
return summary, plot_image
|
| 321 |
-
|
| 322 |
-
except Exception as e:
|
| 323 |
-
error_msg = f"❌ **Benchmark Error**: {str(e)}\n\n"
|
| 324 |
-
if not ASI_AVAILABLE:
|
| 325 |
-
error_msg += f"**ASI Error**: {ASI_ERROR}\n\n"
|
| 326 |
-
error_msg += "**Fallback Results (Demo Mode)**:\n"
|
| 327 |
-
error_msg += f"- **Best Speedup**: {VALIDATED_RESULTS['best_speedup']}x\n"
|
| 328 |
-
error_msg += f"- **Architecture**: {VALIDATED_RESULTS['architecture_tested']}\n"
|
| 329 |
-
return error_msg, None
|
| 330 |
-
|
| 331 |
-
# Create Gradio interface
|
| 332 |
-
with gr.Blocks(title="ASI V2.5 Live Demo", theme=gr.themes.Soft()) as app:
|
| 333 |
-
gr.HTML("""
|
| 334 |
-
<div style="text-align: center; margin-bottom: 20px;">
|
| 335 |
-
<h1>🚀 ASI V2.5: Ultra-Professional Linear Attention</h1>
|
| 336 |
-
<h2>Live Performance Demo - 2.44x Speedup Validated</h2>
|
| 337 |
-
<p><strong>Interactive benchmark + HuggingFace Dataset Testing</strong></p>
|
| 338 |
-
</div>
|
| 339 |
-
""")
|
| 340 |
-
|
| 341 |
-
with gr.Tab("🔥 Live Benchmark"):
|
| 342 |
-
gr.Markdown("### Run real-time performance comparison")
|
| 343 |
-
|
| 344 |
-
with gr.Row():
|
| 345 |
-
with gr.Column():
|
| 346 |
-
seq_input = gr.Textbox(
|
| 347 |
-
value="512, 1024, 2048",
|
| 348 |
-
label="Sequence Lengths",
|
| 349 |
-
placeholder="512, 1024, 2048, 4096"
|
| 350 |
-
)
|
| 351 |
-
runs_input = gr.Slider(1, 5, value=3, step=1, label="Number of Runs")
|
| 352 |
-
benchmark_btn = gr.Button("🚀 Run Benchmark", variant="primary")
|
| 353 |
-
|
| 354 |
-
with gr.Column():
|
| 355 |
-
device_info = "CPU (Safe Mode)"
|
| 356 |
-
try:
|
| 357 |
-
demo = get_demo_instance()
|
| 358 |
-
device_info = demo.device.upper()
|
| 359 |
-
except:
|
| 360 |
-
pass
|
| 361 |
-
|
| 362 |
-
gr.Markdown(f"""
|
| 363 |
-
**Current Device**: {device_info}
|
| 364 |
-
**ASI Status**: {"✅ Available" if ASI_AVAILABLE else "⚠️ Demo Mode"}
|
| 365 |
-
**Datasets**: {"✅ Available" if DATASETS_AVAILABLE else "❌ Not Available"}
|
| 366 |
-
|
| 367 |
-
**Validated Performance**:
|
| 368 |
-
- ⚡ {VALIDATED_RESULTS['best_speedup']}x speedup
|
| 369 |
-
- 📊 {VALIDATED_RESULTS['layer_coverage']}% coverage
|
| 370 |
-
- 🎯 {VALIDATED_RESULTS['throughput_tokens_per_sec']:,} tok/s
|
| 371 |
-
""")
|
| 372 |
-
|
| 373 |
-
with gr.Row():
|
| 374 |
-
results_output = gr.Markdown(label="Results")
|
| 375 |
-
plot_output = gr.Image(label="Performance Chart")
|
| 376 |
-
|
| 377 |
-
benchmark_btn.click(run_benchmark, [seq_input, runs_input], [results_output, plot_output])
|
| 378 |
-
|
| 379 |
-
with gr.Tab("📊 Dataset Testing"):
|
| 380 |
-
gr.Markdown("### Test ASI performance on HuggingFace datasets")
|
| 381 |
-
|
| 382 |
-
with gr.Row():
|
| 383 |
-
with gr.Column():
|
| 384 |
-
dataset_url_input = gr.Textbox(
|
| 385 |
-
value="fka/awesome-chatgpt-prompts",
|
| 386 |
-
label="HuggingFace Dataset URL or Path",
|
| 387 |
-
placeholder="fka/awesome-chatgpt-prompts or https://huggingface.co/datasets/..."
|
| 388 |
-
)
|
| 389 |
-
sample_size_input = gr.Slider(10, 1000, value=100, step=10, label="Sample Size")
|
| 390 |
-
dataset_test_btn = gr.Button("🔍 Analyze Dataset", variant="primary")
|
| 391 |
-
|
| 392 |
-
with gr.Column():
|
| 393 |
-
gr.Markdown("""
|
| 394 |
-
**Example Datasets**:
|
| 395 |
-
- `fka/awesome-chatgpt-prompts` - ChatGPT prompts
|
| 396 |
-
- `squad` - Question answering
|
| 397 |
-
- `imdb` - Movie reviews
|
| 398 |
-
- `wikitext-103-raw-v1` - Wikipedia text
|
| 399 |
-
|
| 400 |
-
**What this tests**:
|
| 401 |
-
- Dataset text length distribution
|
| 402 |
-
- ASI speedup on real data
|
| 403 |
-
- Performance across length ranges
|
| 404 |
-
""")
|
| 405 |
-
|
| 406 |
-
with gr.Row():
|
| 407 |
-
dataset_results = gr.Markdown(label="Dataset Analysis")
|
| 408 |
-
dataset_plot = gr.Image(label="Performance on Dataset")
|
| 409 |
-
|
| 410 |
-
dataset_test_btn.click(
|
| 411 |
-
test_dataset_processing,
|
| 412 |
-
[dataset_url_input, sample_size_input],
|
| 413 |
-
[dataset_results, dataset_plot]
|
| 414 |
-
)
|
| 415 |
-
|
| 416 |
-
with gr.Tab("📋 Installation"):
|
| 417 |
-
gr.Markdown(f"""
|
| 418 |
-
# 🚀 Install ASI V2.5
|
| 419 |
-
|
| 420 |
-
## Quick Installation
|
| 421 |
-
```bash
|
| 422 |
-
pip install git+https://github.com/khopilot/asi-v25-longformer-core.git
|
| 423 |
-
```
|
| 424 |
-
|
| 425 |
-
## Usage Example
|
| 426 |
-
```python
|
| 427 |
-
from asi_v25 import create_asi_attention
|
| 428 |
-
|
| 429 |
-
# Create ultra-fast attention (2.44x speedup)
|
| 430 |
-
attention = create_asi_attention(
|
| 431 |
-
dim=768,
|
| 432 |
-
num_heads=12,
|
| 433 |
-
use_extreme=True # Use validated configuration
|
| 434 |
-
)
|
| 435 |
-
|
| 436 |
-
# Use in your model
|
| 437 |
-
output = attention(queries, keys, values)
|
| 438 |
-
```
|
| 439 |
-
|
| 440 |
-
## System Status
|
| 441 |
-
- **ASI V2.5**: {"✅ Available" if ASI_AVAILABLE else "❌ Not Available"}
|
| 442 |
-
- **Datasets**: {"✅ Available" if DATASETS_AVAILABLE else "❌ Not Available"}
|
| 443 |
-
- **Error**: {ASI_ERROR if ASI_ERROR else "None"}
|
| 444 |
-
|
| 445 |
-
## Links
|
| 446 |
-
- 🔥 **Live Demo**: [ASI V2.5 Interactive Demo](https://huggingface.co/spaces/khopilot/asi-v25-live-demo)
|
| 447 |
-
- 🤗 **HuggingFace Hub**: [khopilot/asi-v25-longformer-core](https://huggingface.co/khopilot/asi-v25-longformer-core)
|
| 448 |
-
- 🐙 **GitHub**: [khopilot/asi-v25-longformer-core](https://github.com/khopilot/asi-v25-longformer-core)
|
| 449 |
-
""")
|
| 450 |
-
|
| 451 |
-
with gr.Tab("🏆 Validated Results"):
|
| 452 |
-
gr.Markdown(f"""
|
| 453 |
-
# 🏆 ASI V2.5 Validated Results
|
| 454 |
-
|
| 455 |
-
## Status: {"✅ ASI Available" if ASI_AVAILABLE else "⚠️ Demo Mode"}
|
| 456 |
-
|
| 457 |
-
## Official Performance Metrics
|
| 458 |
-
- **Best Speedup**: {VALIDATED_RESULTS['best_speedup']}x
|
| 459 |
-
- **Average Speedup**: {VALIDATED_RESULTS['average_speedup']}x
|
| 460 |
-
- **Layer Coverage**: {VALIDATED_RESULTS['layer_coverage']}%
|
| 461 |
-
- **Throughput**: {VALIDATED_RESULTS['throughput_tokens_per_sec']:,} tokens/sec
|
| 462 |
-
- **Max Sequence**: {VALIDATED_RESULTS['max_sequence_length']:,} tokens
|
| 463 |
-
- **Architecture**: {VALIDATED_RESULTS['architecture_tested']}
|
| 464 |
-
|
| 465 |
-
## Configuration Used
|
| 466 |
-
- **ASI Threshold**: 8 tokens (ultra-aggressive)
|
| 467 |
-
- **Feature Dimension**: 4 (maximum compression)
|
| 468 |
-
- **Layers Replaced**: 11/12 (91.7% coverage)
|
| 469 |
-
- **Device**: Apple Silicon MPS optimized
|
| 470 |
-
|
| 471 |
-
## Validation Method
|
| 472 |
-
1. **Longformer-base-4096** model loaded
|
| 473 |
-
2. **Real text sequences** up to 4096 tokens
|
| 474 |
-
3. **Multiple runs** for statistical accuracy
|
| 475 |
-
4. **Quality preservation** verified (no degradation)
|
| 476 |
-
5. **Memory efficiency** confirmed (linear scaling)
|
| 477 |
-
|
| 478 |
-
✅ **All results independently reproducible via examples/**
|
| 479 |
-
""")
|
| 480 |
-
|
| 481 |
-
if __name__ == "__main__":
|
| 482 |
-
print("🚀 Launching ASI V2.5 Complete Demo...")
|
| 483 |
-
app.launch()
|
|
|
|
| 1 |
+
gradio==4.44.0
|
| 2 |
+
torch>=1.12.0
|
| 3 |
+
numpy>=1.21.0
|
| 4 |
+
matplotlib>=3.5.0
|
| 5 |
+
datasets>=2.0.0
|
| 6 |
+
transformers>=4.21.0
|
| 7 |
+
huggingface-hub>=0.19.0
|
| 8 |
+
python-multipart>=0.0.6
|
| 9 |
+
git+https://github.com/khopilot/asi-v25-longformer-core.git
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|