Spaces:
Running
Running
| # ------------------------------------------------------------------------ | |
| # Modified from OFA (https://github.com/OFA-Sys/OFA) | |
| # Copyright 2022 The OFA-Sys Team. | |
| # All rights reserved. | |
| # This source code is licensed under the Apache 2.0 license | |
| # found in the LICENSE file in the root directory. | |
| # ------------------------------------------------------------------------ | |
| # Modifications Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| from io import BytesIO | |
| import logging | |
| import warnings | |
| import numpy as np | |
| import torch | |
| import base64 | |
| import utils.transforms as T | |
| import math | |
| import os | |
| from PIL import Image, ImageFile | |
| from data import data_utils | |
| from data.base_dataset import BaseDataset | |
| from bert.tokenization_bert import BertTokenizer | |
| ImageFile.LOAD_TRUNCATED_IMAGES = True | |
| ImageFile.MAX_IMAGE_PIXELS = None | |
| Image.MAX_IMAGE_PIXELS = None | |
| logger = logging.getLogger(__name__) | |
| warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning) | |
| IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406) | |
| IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225) | |
| class RefcocoPretrainDataset(BaseDataset): | |
| def __init__( | |
| self, | |
| split, | |
| dataset, | |
| bpe, | |
| src_dict, | |
| tgt_dict=None, | |
| max_src_length=80, | |
| max_tgt_length=30, | |
| patch_image_size=512, | |
| imagenet_default_mean_and_std=False, | |
| num_bins=1000, | |
| max_image_size=512, | |
| image_path="../../datasets/images" | |
| ): | |
| super().__init__(split, dataset, bpe, src_dict, tgt_dict) | |
| self.max_src_length = max_src_length | |
| self.max_tgt_length = max_tgt_length | |
| self.patch_image_size = patch_image_size | |
| self.num_bins = num_bins | |
| self.image_path = image_path | |
| if imagenet_default_mean_and_std: | |
| mean = IMAGENET_DEFAULT_MEAN | |
| std = IMAGENET_DEFAULT_STD | |
| else: | |
| mean = [0.5, 0.5, 0.5] | |
| std = [0.5, 0.5, 0.5] | |
| # for positioning | |
| self.positioning_transform = T.Compose([ | |
| T.RandomResize([patch_image_size], max_size=patch_image_size), | |
| T.ToTensor(), | |
| T.Normalize(mean=mean, std=std, max_image_size=max_image_size) | |
| ]) | |
| self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
| def __getitem__(self, index): | |
| uniq_id, img_file, text, region_coord = self.dataset[index] | |
| img_path = os.path.join(self.image_path, img_file) | |
| image = Image.open(img_path).convert("RGB") | |
| w, h = image.size | |
| boxes_target = {"boxes": [], "labels": [], "area": [], "size": torch.tensor([h, w])} | |
| x0, y0, x1, y1 = region_coord.strip().split(',') | |
| region = torch.tensor([float(x0), float(y0), float(x1), float(y1)]) | |
| boxes_target["boxes"] = torch.tensor([[float(x0), float(y0), float(x1), float(y1)]]) | |
| boxes_target["labels"] = np.array([0]) | |
| boxes_target["area"] = torch.tensor([(float(x1) - float(x0)) * (float(y1) - float(y0))]) | |
| patch_image, patch_boxes = self.positioning_transform(image, boxes_target) | |
| resize_h, resize_w = patch_boxes["size"][0], patch_boxes["size"][1] | |
| patch_mask = torch.tensor([True]) | |
| quant_box = [patch_boxes["boxes"][0][i] * (self.num_bins - 1) for i in range(4)] | |
| quant_box = np.array(quant_box).reshape(2, 2) | |
| quant_box11 = [[math.floor(p[0]), math.floor(p[1])] for p in quant_box] | |
| quant_box21 = [[math.ceil(p[0]), math.floor(p[1])] for p in quant_box] | |
| quant_box12 = [[math.floor(p[0]), math.ceil(p[1])] for p in quant_box] | |
| quant_box22 = [[math.ceil(p[0]), math.ceil(p[1])] for p in quant_box] | |
| # compute linear interpolation coefficient (0 for bos token) | |
| delta_x1 = torch.tensor([0] + [p[0] - math.floor(p[0]) for p in quant_box]) | |
| delta_y1 = torch.tensor([0] + [p[1] - math.floor(p[1]) for p in quant_box]) | |
| delta_x2 = 1 - delta_x1 | |
| delta_y2 = 1 - delta_y1 | |
| region_coord11 = " ".join([f"<bin_{int(p[0])}_{int(p[1])}>" for p in quant_box11]) | |
| region_coord21 = " ".join([f"<bin_{int(p[0])}_{int(p[1])}>" for p in quant_box21]) | |
| region_coord12 = " ".join([f"<bin_{int(p[0])}_{int(p[1])}>" for p in quant_box12]) | |
| region_coord22 = " ".join([f"<bin_{int(p[0])}_{int(p[1])}>" for p in quant_box22]) | |
| src_caption = self.pre_caption(text, self.max_src_length) | |
| prompt = ' which region does the text " {} " describe?'.format(src_caption) | |
| # tgt for input | |
| tgt_item11 = self.encode_text(region_coord11, use_bpe=False) | |
| tgt_item12 = self.encode_text(region_coord12, use_bpe=False) | |
| tgt_item21 = self.encode_text(region_coord21, use_bpe=False) | |
| tgt_item22 = self.encode_text(region_coord22, use_bpe=False) | |
| # tgt for output | |
| tgt_box = torch.reshape(patch_boxes["boxes"][0], (2, 2)) | |
| target_item = torch.cat([tgt_box, torch.tensor([[1, 1]])], dim=0) # [1, 1] is padding token for eos | |
| #target_item = torch.cat([tgt_item, self.eos_item]) | |
| prev_output_item11 = torch.cat([self.bos_item, tgt_item11]) | |
| prev_output_item12 = torch.cat([self.bos_item, tgt_item12]) | |
| prev_output_item21 = torch.cat([self.bos_item, tgt_item21]) | |
| prev_output_item22 = torch.cat([self.bos_item, tgt_item22]) | |
| example = { | |
| "id": uniq_id, | |
| "source": prompt, | |
| "patch_image": patch_image, | |
| "patch_mask": patch_mask, | |
| "target": target_item, | |
| "prev_output_tokens_11": prev_output_item11, | |
| "prev_output_tokens_12": prev_output_item12, | |
| "prev_output_tokens_21": prev_output_item21, | |
| "prev_output_tokens_22": prev_output_item22, | |
| "delta_x1": delta_x1, | |
| "delta_y1": delta_y1, | |
| "delta_x2": delta_x2, | |
| "delta_y2": delta_y2, | |
| "w_resize_ratio": resize_w / w, | |
| "h_resize_ratio": resize_h / h, | |
| "region_coord": region, | |
| "token_type": torch.tensor([0, 0, 2]) | |
| } | |
| return example | |
| def collate(self, samples, pad_idx, eos_idx): | |
| if len(samples) == 0: | |
| return {} | |
| def merge(key): | |
| return data_utils.collate_tokens( | |
| [s[key] for s in samples], | |
| pad_idx, | |
| eos_idx=eos_idx, | |
| ) | |
| id = np.array([s["id"] for s in samples]) | |
| captions = [s["source"] for s in samples] | |
| tokenized = self.tokenizer.batch_encode_plus(captions, padding="longest", return_tensors="pt") | |
| src_tokens = tokenized["input_ids"] | |
| att_masks = tokenized["attention_mask"] | |
| src_lengths = torch.LongTensor(att_masks.ne(0).long().sum()) | |
| patch_images = torch.stack([sample['patch_image'] for sample in samples], dim=0) | |
| patch_masks = torch.cat([sample['patch_mask'] for sample in samples]) | |
| w_resize_ratios = torch.stack([s["w_resize_ratio"] for s in samples], dim=0) | |
| h_resize_ratios = torch.stack([s["h_resize_ratio"] for s in samples], dim=0) | |
| delta_x1 = torch.stack([s["delta_x1"] for s in samples], dim=0) | |
| delta_y1 = torch.stack([s["delta_y1"] for s in samples], dim=0) | |
| delta_x2 = torch.stack([s["delta_x2"] for s in samples], dim=0) | |
| delta_y2 = torch.stack([s["delta_y2"] for s in samples], dim=0) | |
| region_coords = torch.stack([s['region_coord'] for s in samples], dim=0) | |
| target = merge("target") | |
| tgt_lengths = torch.LongTensor([s["target"].ne(pad_idx).long().sum() for s in samples]) | |
| ntokens = tgt_lengths.sum().item() | |
| prev_output_tokens_11 = merge("prev_output_tokens_11") | |
| prev_output_tokens_12 = merge("prev_output_tokens_12") | |
| prev_output_tokens_21 = merge("prev_output_tokens_21") | |
| prev_output_tokens_22 = merge("prev_output_tokens_22") | |
| token_type = merge("token_type") | |
| batch = { | |
| "id": id, | |
| "nsentences": len(samples), | |
| "ntokens": ntokens, | |
| "net_input": { | |
| "src_tokens": src_tokens, | |
| "src_lengths": src_lengths, | |
| "att_masks": att_masks, | |
| "patch_images": patch_images, | |
| "patch_masks": patch_masks, | |
| "prev_output_tokens_11": prev_output_tokens_11, | |
| "prev_output_tokens_12": prev_output_tokens_12, | |
| "prev_output_tokens_21": prev_output_tokens_21, | |
| "prev_output_tokens_22": prev_output_tokens_22, | |
| "delta_x1": delta_x1, | |
| "delta_y1": delta_y1, | |
| "delta_x2": delta_x2, | |
| "delta_y2": delta_y2 | |
| }, | |
| "target": target, | |
| "token_type": token_type, | |
| "w_resize_ratios": w_resize_ratios, | |
| "h_resize_ratios": h_resize_ratios, | |
| "region_coords": region_coords | |
| } | |
| return batch | |
| def collater(self, samples, pad_to_length=None): | |
| """Merge a list of samples to form a mini-batch. | |
| Args: | |
| samples (List[dict]): samples to collate | |
| Returns: | |
| dict: a mini-batch containing the data of the task | |
| """ | |
| return self.collate(samples, pad_idx=self.pad, eos_idx=self.eos) |