Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
+
from transformers.cache_utils import DynamicCache
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
# Minimal generate function for token-by-token generation
|
| 7 |
+
def generate(model, input_ids: torch.Tensor, past_key_values, max_new_tokens: int = 50) -> torch.Tensor:
|
| 8 |
+
device = model.model.embed_tokens.weight.device
|
| 9 |
+
origin_len = input_ids.shape[-1]
|
| 10 |
+
input_ids = input_ids.to(device)
|
| 11 |
+
output_ids = input_ids.clone()
|
| 12 |
+
next_token = input_ids
|
| 13 |
+
|
| 14 |
+
with torch.no_grad():
|
| 15 |
+
for _ in range(max_new_tokens):
|
| 16 |
+
out = model(
|
| 17 |
+
input_ids=next_token,
|
| 18 |
+
past_key_values=past_key_values,
|
| 19 |
+
use_cache=True
|
| 20 |
+
)
|
| 21 |
+
logits = out.logits[:, -1, :]
|
| 22 |
+
token = torch.argmax(logits, dim=-1, keepdim=True)
|
| 23 |
+
output_ids = torch.cat([output_ids, token], dim=-1)
|
| 24 |
+
past_key_values = out.past_key_values
|
| 25 |
+
next_token = token.to(device)
|
| 26 |
+
|
| 27 |
+
if model.config.eos_token_id is not None and token.item() == model.config.eos_token_id:
|
| 28 |
+
break
|
| 29 |
+
|
| 30 |
+
# Return just the newly generated part
|
| 31 |
+
return output_ids[:, origin_len:]
|
| 32 |
+
torch.serialization.add_safe_globals([DynamicCache])
|
| 33 |
+
torch.serialization.add_safe_globals([set])
|
| 34 |
+
|
| 35 |
+
def get_kv_cache(model, tokenizer, prompt: str) -> DynamicCache:
|
| 36 |
+
# Encode prompt
|
| 37 |
+
device = model.model.embed_tokens.weight.device
|
| 38 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
| 39 |
+
cache = DynamicCache()# it grows as text is generated
|
| 40 |
+
#Run the model to populate the KV cache:
|
| 41 |
+
with torch.no_grad():
|
| 42 |
+
_ = model(
|
| 43 |
+
input_ids=input_ids,
|
| 44 |
+
past_key_values=cache,
|
| 45 |
+
use_cache=True
|
| 46 |
+
)
|
| 47 |
+
return cache
|
| 48 |
+
|
| 49 |
+
def clean_up(cache: DynamicCache, origin_len: int):
|
| 50 |
+
# Remove any tokens appended to the original knowledge
|
| 51 |
+
for i in range(len(cache.key_cache)):
|
| 52 |
+
cache.key_cache[i] = cache.key_cache[i][:, :, :origin_len, :]
|
| 53 |
+
cache.value_cache[i] = cache.value_cache[i][:, :, :origin_len, :]
|
| 54 |
+
model_name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
|
| 55 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
| 56 |
+
#token=HF_TOKEN,
|
| 57 |
+
trust_remote_code=True)
|
| 58 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 59 |
+
model_name,
|
| 60 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 61 |
+
device_map="auto",
|
| 62 |
+
trust_remote_code=True,
|
| 63 |
+
# token=HF_TOKEN
|
| 64 |
+
)
|
| 65 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 66 |
+
model.to(device)
|
| 67 |
+
print(f"Loaded {model_name}.")
|
| 68 |
+
if not os.path.exists("/kaggle/input/delice/delice.txt"):
|
| 69 |
+
raise FileNotFoundError("Please create a `document.txt` .")
|
| 70 |
+
|
| 71 |
+
with open("/kaggle/input/delice/delice.txt", "r", encoding="utf-8") as f:
|
| 72 |
+
doc_text = f.read()
|
| 73 |
+
|
| 74 |
+
system_prompt = f"""
|
| 75 |
+
<|system|>
|
| 76 |
+
Answer concisely and precisely, You are an assistant who provides concise factual answers.
|
| 77 |
+
<|user|>
|
| 78 |
+
Context:
|
| 79 |
+
{doc_text}
|
| 80 |
+
Question:
|
| 81 |
+
""".strip()
|
| 82 |
+
|
| 83 |
+
# Build the cache
|
| 84 |
+
ronan_cache = get_kv_cache(model, tokenizer, system_prompt)
|
| 85 |
+
torch.save(ronan_cache, "/kaggle/working/ronan_caches.pth")
|
| 86 |
+
origin_len = ronan_cache.key_cache[0].shape[-2]
|
| 87 |
+
print("KV cache built.")
|