Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import PIL.Image as Image | |
| from ultralytics import ASSETS, YOLO | |
| model = YOLO("yolo12x.pt") | |
| def predict_image(img, conf_threshold, iou_threshold): | |
| """Predicts persons in an image and returns the image with detections and count.""" | |
| results = model.predict( | |
| source=img, | |
| conf=conf_threshold, | |
| iou=iou_threshold, | |
| show_labels=True, | |
| show_conf=True, | |
| imgsz=640, | |
| classes=[0] | |
| ) | |
| for r in results: | |
| im_array = r.plot() | |
| im = Image.fromarray(im_array[..., ::-1]) | |
| person_count = len(results[0].boxes) if results[0].boxes is not None else 0 | |
| return im, f"Number of persons detected: {person_count}" | |
| iface = gr.Interface( | |
| fn=predict_image, | |
| inputs=[ | |
| gr.Image(type="pil", label="Upload Image"), | |
| gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"), | |
| gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"), | |
| ], | |
| outputs=[ | |
| gr.Image(type="pil", label="Result"), | |
| gr.Textbox(label="Person Count") | |
| ], | |
| title="Image Person Detection", | |
| description="Upload images to detect persons and get a count", | |
| ) | |
| if __name__ == "__main__": | |
| iface.launch() |