Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import PIL.Image as Image | |
| from ultralytics import ASSETS, YOLO | |
| model = YOLO("yolo12x.pt") | |
| def predict_image(img, conf_threshold, iou_threshold): | |
| """Predicts persons and cars in an image and returns the image with detections and counts.""" | |
| results = model.predict( | |
| source=img, | |
| conf=conf_threshold, | |
| iou=iou_threshold, | |
| show_labels=True, | |
| show_conf=True, | |
| imgsz=640, | |
| classes=[0, 2] # 0 for person, 2 for car | |
| ) | |
| for r in results: | |
| im_array = r.plot() | |
| im = Image.fromarray(im_array[..., ::-1]) | |
| # Count persons and cars separately | |
| person_count = 0 | |
| car_count = 0 | |
| if results[0].boxes is not None: | |
| for box in results[0].boxes: | |
| class_id = int(box.cls[0]) | |
| if class_id == 0: # person | |
| person_count += 1 | |
| elif class_id == 2: # car | |
| car_count += 1 | |
| total_count = person_count + car_count | |
| count_text = f"Persons: {person_count} | Cars: {car_count} | Total: {total_count}" | |
| return im, count_text | |
| iface = gr.Interface( | |
| fn=predict_image, | |
| inputs=[ | |
| gr.Image(type="pil", label="Upload Image"), | |
| gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"), | |
| gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"), | |
| ], | |
| outputs=[ | |
| gr.Image(type="pil", label="Result"), | |
| gr.Textbox(label="Detection Count") | |
| ], | |
| title="Person and Car Detection", | |
| description="Upload images to detect persons and cars with individual counts", | |
| ) | |
| if __name__ == "__main__": | |
| iface.launch() |