|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
|
import math |
|
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union |
|
|
|
|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
from transformers import ( |
|
|
CLIPImageProcessor, |
|
|
CLIPTextModel, |
|
|
CLIPTextModelWithProjection, |
|
|
CLIPTokenizer, |
|
|
CLIPVisionModelWithProjection, |
|
|
) |
|
|
|
|
|
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor |
|
|
from diffusers.loaders import ( |
|
|
FromSingleFileMixin, |
|
|
IPAdapterMixin, |
|
|
StableDiffusionXLLoraLoaderMixin, |
|
|
TextualInversionLoaderMixin, |
|
|
) |
|
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel |
|
|
from diffusers.models.attention_processor import ( |
|
|
Attention, |
|
|
AttnProcessor, |
|
|
AttnProcessor2_0, |
|
|
XFormersAttnProcessor, |
|
|
) |
|
|
from diffusers.models.lora import adjust_lora_scale_text_encoder |
|
|
from diffusers.schedulers import DDIMScheduler, DPMSolverMultistepScheduler |
|
|
from diffusers.utils import ( |
|
|
USE_PEFT_BACKEND, |
|
|
is_invisible_watermark_available, |
|
|
is_torch_xla_available, |
|
|
logging, |
|
|
replace_example_docstring, |
|
|
scale_lora_layers, |
|
|
unscale_lora_layers, |
|
|
) |
|
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline |
|
|
from .pipeline_output import LEditsPPDiffusionPipelineOutput, LEditsPPInversionPipelineOutput |
|
|
|
|
|
|
|
|
if is_invisible_watermark_available(): |
|
|
from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker |
|
|
|
|
|
if is_torch_xla_available(): |
|
|
import torch_xla.core.xla_model as xm |
|
|
|
|
|
XLA_AVAILABLE = True |
|
|
else: |
|
|
XLA_AVAILABLE = False |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
EXAMPLE_DOC_STRING = """ |
|
|
Examples: |
|
|
```py |
|
|
>>> import torch |
|
|
>>> import PIL |
|
|
>>> import requests |
|
|
>>> from io import BytesIO |
|
|
|
|
|
>>> from diffusers import LEditsPPPipelineStableDiffusionXL |
|
|
|
|
|
>>> pipe = LEditsPPPipelineStableDiffusionXL.from_pretrained( |
|
|
... "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 |
|
|
... ) |
|
|
>>> pipe = pipe.to("cuda") |
|
|
|
|
|
|
|
|
>>> def download_image(url): |
|
|
... response = requests.get(url) |
|
|
... return PIL.Image.open(BytesIO(response.content)).convert("RGB") |
|
|
|
|
|
|
|
|
>>> img_url = "https://www.aiml.informatik.tu-darmstadt.de/people/mbrack/tennis.jpg" |
|
|
>>> image = download_image(img_url) |
|
|
|
|
|
>>> _ = pipe.invert(image=image, num_inversion_steps=50, skip=0.2) |
|
|
|
|
|
>>> edited_image = pipe( |
|
|
... editing_prompt=["tennis ball", "tomato"], |
|
|
... reverse_editing_direction=[True, False], |
|
|
... edit_guidance_scale=[5.0, 10.0], |
|
|
... edit_threshold=[0.9, 0.85], |
|
|
... ).images[0] |
|
|
``` |
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
class LeditsAttentionStore: |
|
|
@staticmethod |
|
|
def get_empty_store(): |
|
|
return {"down_cross": [], "mid_cross": [], "up_cross": [], "down_self": [], "mid_self": [], "up_self": []} |
|
|
|
|
|
def __call__(self, attn, is_cross: bool, place_in_unet: str, editing_prompts, PnP=False): |
|
|
|
|
|
if attn.shape[1] <= self.max_size: |
|
|
bs = 1 + int(PnP) + editing_prompts |
|
|
skip = 2 if PnP else 1 |
|
|
attn = torch.stack(attn.split(self.batch_size)).permute(1, 0, 2, 3) |
|
|
source_batch_size = int(attn.shape[1] // bs) |
|
|
self.forward(attn[:, skip * source_batch_size :], is_cross, place_in_unet) |
|
|
|
|
|
def forward(self, attn, is_cross: bool, place_in_unet: str): |
|
|
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}" |
|
|
|
|
|
self.step_store[key].append(attn) |
|
|
|
|
|
def between_steps(self, store_step=True): |
|
|
if store_step: |
|
|
if self.average: |
|
|
if len(self.attention_store) == 0: |
|
|
self.attention_store = self.step_store |
|
|
else: |
|
|
for key in self.attention_store: |
|
|
for i in range(len(self.attention_store[key])): |
|
|
self.attention_store[key][i] += self.step_store[key][i] |
|
|
else: |
|
|
if len(self.attention_store) == 0: |
|
|
self.attention_store = [self.step_store] |
|
|
else: |
|
|
self.attention_store.append(self.step_store) |
|
|
|
|
|
self.cur_step += 1 |
|
|
self.step_store = self.get_empty_store() |
|
|
|
|
|
def get_attention(self, step: int): |
|
|
if self.average: |
|
|
attention = { |
|
|
key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store |
|
|
} |
|
|
else: |
|
|
assert step is not None |
|
|
attention = self.attention_store[step] |
|
|
return attention |
|
|
|
|
|
def aggregate_attention( |
|
|
self, attention_maps, prompts, res: Union[int, Tuple[int]], from_where: List[str], is_cross: bool, select: int |
|
|
): |
|
|
out = [[] for x in range(self.batch_size)] |
|
|
if isinstance(res, int): |
|
|
num_pixels = res**2 |
|
|
resolution = (res, res) |
|
|
else: |
|
|
num_pixels = res[0] * res[1] |
|
|
resolution = res[:2] |
|
|
|
|
|
for location in from_where: |
|
|
for bs_item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]: |
|
|
for batch, item in enumerate(bs_item): |
|
|
if item.shape[1] == num_pixels: |
|
|
cross_maps = item.reshape(len(prompts), -1, *resolution, item.shape[-1])[select] |
|
|
out[batch].append(cross_maps) |
|
|
|
|
|
out = torch.stack([torch.cat(x, dim=0) for x in out]) |
|
|
|
|
|
out = out.sum(1) / out.shape[1] |
|
|
return out |
|
|
|
|
|
def __init__(self, average: bool, batch_size=1, max_resolution=16, max_size: int = None): |
|
|
self.step_store = self.get_empty_store() |
|
|
self.attention_store = [] |
|
|
self.cur_step = 0 |
|
|
self.average = average |
|
|
self.batch_size = batch_size |
|
|
if max_size is None: |
|
|
self.max_size = max_resolution**2 |
|
|
elif max_size is not None and max_resolution is None: |
|
|
self.max_size = max_size |
|
|
else: |
|
|
raise ValueError("Only allowed to set one of max_resolution or max_size") |
|
|
|
|
|
|
|
|
|
|
|
class LeditsGaussianSmoothing: |
|
|
def __init__(self, device): |
|
|
kernel_size = [3, 3] |
|
|
sigma = [0.5, 0.5] |
|
|
|
|
|
|
|
|
kernel = 1 |
|
|
meshgrids = torch.meshgrid([torch.arange(size, dtype=torch.float32) for size in kernel_size]) |
|
|
for size, std, mgrid in zip(kernel_size, sigma, meshgrids): |
|
|
mean = (size - 1) / 2 |
|
|
kernel *= 1 / (std * math.sqrt(2 * math.pi)) * torch.exp(-(((mgrid - mean) / (2 * std)) ** 2)) |
|
|
|
|
|
|
|
|
kernel = kernel / torch.sum(kernel) |
|
|
|
|
|
|
|
|
kernel = kernel.view(1, 1, *kernel.size()) |
|
|
kernel = kernel.repeat(1, *[1] * (kernel.dim() - 1)) |
|
|
|
|
|
self.weight = kernel.to(device) |
|
|
|
|
|
def __call__(self, input): |
|
|
""" |
|
|
Arguments: |
|
|
Apply gaussian filter to input. |
|
|
input (torch.Tensor): Input to apply gaussian filter on. |
|
|
Returns: |
|
|
filtered (torch.Tensor): Filtered output. |
|
|
""" |
|
|
return F.conv2d(input, weight=self.weight.to(input.dtype)) |
|
|
|
|
|
|
|
|
|
|
|
class LEDITSCrossAttnProcessor: |
|
|
def __init__(self, attention_store, place_in_unet, pnp, editing_prompts): |
|
|
self.attnstore = attention_store |
|
|
self.place_in_unet = place_in_unet |
|
|
self.editing_prompts = editing_prompts |
|
|
self.pnp = pnp |
|
|
|
|
|
def __call__( |
|
|
self, |
|
|
attn: Attention, |
|
|
hidden_states, |
|
|
encoder_hidden_states, |
|
|
attention_mask=None, |
|
|
temb=None, |
|
|
): |
|
|
batch_size, sequence_length, _ = ( |
|
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
|
) |
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
|
|
if encoder_hidden_states is None: |
|
|
encoder_hidden_states = hidden_states |
|
|
elif attn.norm_cross: |
|
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
|
|
query = attn.head_to_batch_dim(query) |
|
|
key = attn.head_to_batch_dim(key) |
|
|
value = attn.head_to_batch_dim(value) |
|
|
|
|
|
attention_probs = attn.get_attention_scores(query, key, attention_mask) |
|
|
self.attnstore( |
|
|
attention_probs, |
|
|
is_cross=True, |
|
|
place_in_unet=self.place_in_unet, |
|
|
editing_prompts=self.editing_prompts, |
|
|
PnP=self.pnp, |
|
|
) |
|
|
|
|
|
hidden_states = torch.bmm(attention_probs, value) |
|
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
return hidden_states |
|
|
|
|
|
|
|
|
class LEditsPPPipelineStableDiffusionXL( |
|
|
DiffusionPipeline, |
|
|
FromSingleFileMixin, |
|
|
StableDiffusionXLLoraLoaderMixin, |
|
|
TextualInversionLoaderMixin, |
|
|
IPAdapterMixin, |
|
|
): |
|
|
""" |
|
|
Pipeline for textual image editing using LEDits++ with Stable Diffusion XL. |
|
|
|
|
|
This model inherits from [`DiffusionPipeline`] and builds on the [`StableDiffusionXLPipeline`]. Check the |
|
|
superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a |
|
|
particular device, etc.). |
|
|
|
|
|
In addition the pipeline inherits the following loading methods: |
|
|
- *LoRA*: [`LEditsPPPipelineStableDiffusionXL.load_lora_weights`] |
|
|
- *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`] |
|
|
|
|
|
as well as the following saving methods: |
|
|
- *LoRA*: [`loaders.StableDiffusionXLPipeline.save_lora_weights`] |
|
|
|
|
|
Args: |
|
|
vae ([`AutoencoderKL`]): |
|
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
|
text_encoder ([`~transformers.CLIPTextModel`]): |
|
|
Frozen text-encoder. Stable Diffusion XL uses the text portion of |
|
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically |
|
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. |
|
|
text_encoder_2 ([`~transformers.CLIPTextModelWithProjection`]): |
|
|
Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of |
|
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), |
|
|
specifically the |
|
|
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k) |
|
|
variant. |
|
|
tokenizer ([`~transformers.CLIPTokenizer`]): |
|
|
Tokenizer of class |
|
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
|
tokenizer_2 ([`~transformers.CLIPTokenizer`]): |
|
|
Second Tokenizer of class |
|
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. |
|
|
scheduler ([`DPMSolverMultistepScheduler`] or [`DDIMScheduler`]): |
|
|
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of |
|
|
[`DPMSolverMultistepScheduler`] or [`DDIMScheduler`]. If any other scheduler is passed it will |
|
|
automatically be set to [`DPMSolverMultistepScheduler`]. |
|
|
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`): |
|
|
Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of |
|
|
`stabilityai/stable-diffusion-xl-base-1-0`. |
|
|
add_watermarker (`bool`, *optional*): |
|
|
Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to |
|
|
watermark output images. If not defined, it will default to True if the package is installed, otherwise no |
|
|
watermarker will be used. |
|
|
""" |
|
|
|
|
|
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae" |
|
|
_optional_components = [ |
|
|
"tokenizer", |
|
|
"tokenizer_2", |
|
|
"text_encoder", |
|
|
"text_encoder_2", |
|
|
"image_encoder", |
|
|
"feature_extractor", |
|
|
] |
|
|
_callback_tensor_inputs = [ |
|
|
"latents", |
|
|
"prompt_embeds", |
|
|
"negative_prompt_embeds", |
|
|
"add_text_embeds", |
|
|
"add_time_ids", |
|
|
"negative_pooled_prompt_embeds", |
|
|
"negative_add_time_ids", |
|
|
] |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
vae: AutoencoderKL, |
|
|
text_encoder: CLIPTextModel, |
|
|
text_encoder_2: CLIPTextModelWithProjection, |
|
|
tokenizer: CLIPTokenizer, |
|
|
tokenizer_2: CLIPTokenizer, |
|
|
unet: UNet2DConditionModel, |
|
|
scheduler: Union[DPMSolverMultistepScheduler, DDIMScheduler], |
|
|
image_encoder: CLIPVisionModelWithProjection = None, |
|
|
feature_extractor: CLIPImageProcessor = None, |
|
|
force_zeros_for_empty_prompt: bool = True, |
|
|
add_watermarker: Optional[bool] = None, |
|
|
): |
|
|
super().__init__() |
|
|
|
|
|
self.register_modules( |
|
|
vae=vae, |
|
|
text_encoder=text_encoder, |
|
|
text_encoder_2=text_encoder_2, |
|
|
tokenizer=tokenizer, |
|
|
tokenizer_2=tokenizer_2, |
|
|
unet=unet, |
|
|
scheduler=scheduler, |
|
|
image_encoder=image_encoder, |
|
|
feature_extractor=feature_extractor, |
|
|
) |
|
|
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) |
|
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
|
|
|
|
if not isinstance(scheduler, DDIMScheduler) and not isinstance(scheduler, DPMSolverMultistepScheduler): |
|
|
self.scheduler = DPMSolverMultistepScheduler.from_config( |
|
|
scheduler.config, algorithm_type="sde-dpmsolver++", solver_order=2 |
|
|
) |
|
|
logger.warning( |
|
|
"This pipeline only supports DDIMScheduler and DPMSolverMultistepScheduler. " |
|
|
"The scheduler has been changed to DPMSolverMultistepScheduler." |
|
|
) |
|
|
|
|
|
self.default_sample_size = self.unet.config.sample_size |
|
|
|
|
|
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() |
|
|
|
|
|
if add_watermarker: |
|
|
self.watermark = StableDiffusionXLWatermarker() |
|
|
else: |
|
|
self.watermark = None |
|
|
self.inversion_steps = None |
|
|
|
|
|
def encode_prompt( |
|
|
self, |
|
|
device: Optional[torch.device] = None, |
|
|
num_images_per_prompt: int = 1, |
|
|
negative_prompt: Optional[str] = None, |
|
|
negative_prompt_2: Optional[str] = None, |
|
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
|
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, |
|
|
lora_scale: Optional[float] = None, |
|
|
clip_skip: Optional[int] = None, |
|
|
enable_edit_guidance: bool = True, |
|
|
editing_prompt: Optional[str] = None, |
|
|
editing_prompt_embeds: Optional[torch.Tensor] = None, |
|
|
editing_pooled_prompt_embeds: Optional[torch.Tensor] = None, |
|
|
avg_diff=None, |
|
|
avg_diff_2nd=None, |
|
|
correlation_weight_factor=0.7, |
|
|
scale=2, |
|
|
scale_2nd=2, |
|
|
) -> object: |
|
|
r""" |
|
|
Encodes the prompt into text encoder hidden states. |
|
|
|
|
|
Args: |
|
|
device: (`torch.device`): |
|
|
torch device |
|
|
num_images_per_prompt (`int`): |
|
|
number of images that should be generated per prompt |
|
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
|
`negative_prompt_embeds` instead. |
|
|
negative_prompt_2 (`str` or `List[str]`, *optional*): |
|
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and |
|
|
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders |
|
|
negative_prompt_embeds (`torch.Tensor`, *optional*): |
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
|
argument. |
|
|
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*): |
|
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` |
|
|
input argument. |
|
|
lora_scale (`float`, *optional*): |
|
|
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. |
|
|
clip_skip (`int`, *optional*): |
|
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
|
enable_edit_guidance (`bool`): |
|
|
Whether to guide towards an editing prompt or not. |
|
|
editing_prompt (`str` or `List[str]`, *optional*): |
|
|
Editing prompt(s) to be encoded. If not defined and 'enable_edit_guidance' is True, one has to pass |
|
|
`editing_prompt_embeds` instead. |
|
|
editing_prompt_embeds (`torch.Tensor`, *optional*): |
|
|
Pre-generated edit text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
|
If not provided and 'enable_edit_guidance' is True, editing_prompt_embeds will be generated from |
|
|
`editing_prompt` input argument. |
|
|
editing_pooled_prompt_embeds (`torch.Tensor`, *optional*): |
|
|
Pre-generated edit pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
|
weighting. If not provided, pooled editing_pooled_prompt_embeds will be generated from `editing_prompt` |
|
|
input argument. |
|
|
""" |
|
|
device = device or self._execution_device |
|
|
|
|
|
|
|
|
|
|
|
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): |
|
|
self._lora_scale = lora_scale |
|
|
|
|
|
|
|
|
if self.text_encoder is not None: |
|
|
if not USE_PEFT_BACKEND: |
|
|
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) |
|
|
else: |
|
|
scale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
|
|
if self.text_encoder_2 is not None: |
|
|
if not USE_PEFT_BACKEND: |
|
|
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) |
|
|
else: |
|
|
scale_lora_layers(self.text_encoder_2, lora_scale) |
|
|
|
|
|
batch_size = self.batch_size |
|
|
|
|
|
|
|
|
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] |
|
|
text_encoders = ( |
|
|
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] |
|
|
) |
|
|
num_edit_tokens = 0 |
|
|
|
|
|
|
|
|
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt |
|
|
|
|
|
if negative_prompt_embeds is None: |
|
|
negative_prompt = negative_prompt or "" |
|
|
negative_prompt_2 = negative_prompt_2 or negative_prompt |
|
|
|
|
|
|
|
|
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt |
|
|
negative_prompt_2 = ( |
|
|
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 |
|
|
) |
|
|
|
|
|
uncond_tokens: List[str] |
|
|
|
|
|
if batch_size != len(negative_prompt): |
|
|
raise ValueError( |
|
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but image inversion " |
|
|
f" has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
|
" the batch size of the input images." |
|
|
) |
|
|
else: |
|
|
uncond_tokens = [negative_prompt, negative_prompt_2] |
|
|
|
|
|
j=0 |
|
|
negative_prompt_embeds_list = [] |
|
|
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders): |
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
|
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) |
|
|
|
|
|
|
|
|
uncond_input = tokenizer( |
|
|
negative_prompt, |
|
|
padding="max_length", |
|
|
max_length=tokenizer.model_max_length, |
|
|
truncation=True, |
|
|
return_tensors="pt", |
|
|
) |
|
|
toks = uncond_input.input_ids |
|
|
|
|
|
negative_prompt_embeds = text_encoder( |
|
|
uncond_input.input_ids.to(device), |
|
|
output_hidden_states=True, |
|
|
) |
|
|
|
|
|
negative_pooled_prompt_embeds = negative_prompt_embeds[0] |
|
|
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] |
|
|
|
|
|
if avg_diff is not None: |
|
|
|
|
|
normed_prompt_embeds = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1, keepdim=True) |
|
|
sims = normed_prompt_embeds[0] @ normed_prompt_embeds[0].T |
|
|
if j == 0: |
|
|
weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 768) |
|
|
|
|
|
standard_weights = torch.ones_like(weights) |
|
|
|
|
|
weights = standard_weights + (weights - standard_weights) * correlation_weight_factor |
|
|
edit_concepts_embeds = negative_prompt_embeds + ( |
|
|
weights * avg_diff[0][None, :].repeat(1, tokenizer.model_max_length, 1) * scale) |
|
|
|
|
|
if avg_diff_2nd is not None: |
|
|
edit_concepts_embeds += (weights * avg_diff_2nd[0][None, :].repeat(1, |
|
|
self.pipe.tokenizer.model_max_length, |
|
|
1) * scale_2nd) |
|
|
else: |
|
|
weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 1280) |
|
|
|
|
|
standard_weights = torch.ones_like(weights) |
|
|
|
|
|
weights = standard_weights + (weights - standard_weights) * correlation_weight_factor |
|
|
edit_concepts_embeds = negative_prompt_embeds + ( |
|
|
weights * avg_diff[1][None, :].repeat(1, tokenizer.model_max_length, 1) * scale) |
|
|
|
|
|
if avg_diff_2nd is not None: |
|
|
edit_concepts_embeds += (weights * avg_diff_2nd[1][None, :].repeat(1, |
|
|
self.pipe.tokenizer_2.model_max_length, |
|
|
1) * scale_2nd) |
|
|
|
|
|
negative_prompt_embeds_list.append(negative_prompt_embeds) |
|
|
j+=1 |
|
|
|
|
|
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) |
|
|
|
|
|
if zero_out_negative_prompt: |
|
|
negative_prompt_embeds = torch.zeros_like(negative_prompt_embeds) |
|
|
negative_pooled_prompt_embeds = torch.zeros_like(negative_pooled_prompt_embeds) |
|
|
|
|
|
if enable_edit_guidance and editing_prompt_embeds is None: |
|
|
editing_prompt_2 = editing_prompt |
|
|
|
|
|
editing_prompts = [editing_prompt, editing_prompt_2] |
|
|
edit_prompt_embeds_list = [] |
|
|
|
|
|
i = 0 |
|
|
for editing_prompt, tokenizer, text_encoder in zip(editing_prompts, tokenizers, text_encoders): |
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
|
editing_prompt = self.maybe_convert_prompt(editing_prompt, tokenizer) |
|
|
|
|
|
max_length = negative_prompt_embeds.shape[1] |
|
|
edit_concepts_input = tokenizer( |
|
|
|
|
|
editing_prompt, |
|
|
padding="max_length", |
|
|
max_length=max_length, |
|
|
truncation=True, |
|
|
return_tensors="pt", |
|
|
return_length=True, |
|
|
) |
|
|
num_edit_tokens = edit_concepts_input.length - 2 |
|
|
toks = edit_concepts_input.input_ids |
|
|
edit_concepts_embeds = text_encoder( |
|
|
edit_concepts_input.input_ids.to(device), |
|
|
output_hidden_states=True, |
|
|
) |
|
|
|
|
|
editing_pooled_prompt_embeds = edit_concepts_embeds[0] |
|
|
if clip_skip is None: |
|
|
edit_concepts_embeds = edit_concepts_embeds.hidden_states[-2] |
|
|
else: |
|
|
|
|
|
edit_concepts_embeds = edit_concepts_embeds.hidden_states[-(clip_skip + 2)] |
|
|
|
|
|
|
|
|
if avg_diff is not None: |
|
|
|
|
|
normed_prompt_embeds = edit_concepts_embeds / edit_concepts_embeds.norm(dim=-1, keepdim=True) |
|
|
sims = normed_prompt_embeds[0] @ normed_prompt_embeds[0].T |
|
|
if i == 0: |
|
|
weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 768) |
|
|
|
|
|
standard_weights = torch.ones_like(weights) |
|
|
|
|
|
weights = standard_weights + (weights - standard_weights) * correlation_weight_factor |
|
|
edit_concepts_embeds = edit_concepts_embeds + ( |
|
|
weights * avg_diff[0][None, :].repeat(1, tokenizer.model_max_length, 1) * scale) |
|
|
|
|
|
if avg_diff_2nd is not None: |
|
|
edit_concepts_embeds += (weights * avg_diff_2nd[0][None, :].repeat(1, |
|
|
self.pipe.tokenizer.model_max_length, |
|
|
1) * scale_2nd) |
|
|
else: |
|
|
weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 1280) |
|
|
|
|
|
standard_weights = torch.ones_like(weights) |
|
|
|
|
|
weights = standard_weights + (weights - standard_weights) * correlation_weight_factor |
|
|
edit_concepts_embeds = edit_concepts_embeds + ( |
|
|
weights * avg_diff[1][None, :].repeat(1, tokenizer.model_max_length, 1) * scale) |
|
|
if avg_diff_2nd is not None: |
|
|
edit_concepts_embeds += (weights * avg_diff_2nd[1][None, :].repeat(1, |
|
|
self.pipe.tokenizer_2.model_max_length, |
|
|
1) * scale_2nd) |
|
|
|
|
|
|
|
|
edit_prompt_embeds_list.append(edit_concepts_embeds) |
|
|
i+=1 |
|
|
|
|
|
edit_concepts_embeds = torch.concat(edit_prompt_embeds_list, dim=-1) |
|
|
elif not enable_edit_guidance: |
|
|
edit_concepts_embeds = None |
|
|
editing_pooled_prompt_embeds = None |
|
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) |
|
|
bs_embed, seq_len, _ = negative_prompt_embeds.shape |
|
|
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) |
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
if enable_edit_guidance: |
|
|
bs_embed_edit, seq_len, _ = edit_concepts_embeds.shape |
|
|
edit_concepts_embeds = edit_concepts_embeds.to(dtype=self.text_encoder_2.dtype, device=device) |
|
|
edit_concepts_embeds = edit_concepts_embeds.repeat(1, num_images_per_prompt, 1) |
|
|
edit_concepts_embeds = edit_concepts_embeds.view(bs_embed_edit * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( |
|
|
bs_embed * num_images_per_prompt, -1 |
|
|
) |
|
|
|
|
|
if enable_edit_guidance: |
|
|
editing_pooled_prompt_embeds = editing_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( |
|
|
bs_embed_edit * num_images_per_prompt, -1 |
|
|
) |
|
|
|
|
|
if self.text_encoder is not None: |
|
|
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
|
|
|
unscale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
|
|
if self.text_encoder_2 is not None: |
|
|
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
|
|
|
unscale_lora_layers(self.text_encoder_2, lora_scale) |
|
|
|
|
|
return ( |
|
|
negative_prompt_embeds, |
|
|
edit_concepts_embeds, |
|
|
negative_pooled_prompt_embeds, |
|
|
editing_pooled_prompt_embeds, |
|
|
num_edit_tokens, |
|
|
) |
|
|
|
|
|
|
|
|
def prepare_extra_step_kwargs(self, eta, generator=None): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
|
extra_step_kwargs = {} |
|
|
if accepts_eta: |
|
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
|
if accepts_generator: |
|
|
extra_step_kwargs["generator"] = generator |
|
|
return extra_step_kwargs |
|
|
|
|
|
def check_inputs( |
|
|
self, |
|
|
negative_prompt=None, |
|
|
negative_prompt_2=None, |
|
|
negative_prompt_embeds=None, |
|
|
negative_pooled_prompt_embeds=None, |
|
|
): |
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
|
raise ValueError( |
|
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
|
) |
|
|
elif negative_prompt_2 is not None and negative_prompt_embeds is not None: |
|
|
raise ValueError( |
|
|
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" |
|
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
|
) |
|
|
|
|
|
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: |
|
|
raise ValueError( |
|
|
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." |
|
|
) |
|
|
|
|
|
|
|
|
def prepare_latents(self, device, latents): |
|
|
latents = latents.to(device) |
|
|
|
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
|
return latents |
|
|
|
|
|
def _get_add_time_ids( |
|
|
self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None |
|
|
): |
|
|
add_time_ids = list(original_size + crops_coords_top_left + target_size) |
|
|
|
|
|
passed_add_embed_dim = ( |
|
|
self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim |
|
|
) |
|
|
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features |
|
|
|
|
|
if expected_add_embed_dim != passed_add_embed_dim: |
|
|
raise ValueError( |
|
|
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." |
|
|
) |
|
|
|
|
|
add_time_ids = torch.tensor([add_time_ids], dtype=dtype) |
|
|
return add_time_ids |
|
|
|
|
|
|
|
|
def upcast_vae(self): |
|
|
dtype = self.vae.dtype |
|
|
self.vae.to(dtype=torch.float32) |
|
|
use_torch_2_0_or_xformers = isinstance( |
|
|
self.vae.decoder.mid_block.attentions[0].processor, |
|
|
( |
|
|
AttnProcessor2_0, |
|
|
XFormersAttnProcessor, |
|
|
), |
|
|
) |
|
|
|
|
|
|
|
|
if use_torch_2_0_or_xformers: |
|
|
self.vae.post_quant_conv.to(dtype) |
|
|
self.vae.decoder.conv_in.to(dtype) |
|
|
self.vae.decoder.mid_block.to(dtype) |
|
|
|
|
|
|
|
|
def get_guidance_scale_embedding( |
|
|
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32 |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 |
|
|
|
|
|
Args: |
|
|
w (`torch.Tensor`): |
|
|
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings. |
|
|
embedding_dim (`int`, *optional*, defaults to 512): |
|
|
Dimension of the embeddings to generate. |
|
|
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`): |
|
|
Data type of the generated embeddings. |
|
|
|
|
|
Returns: |
|
|
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`. |
|
|
""" |
|
|
assert len(w.shape) == 1 |
|
|
w = w * 1000.0 |
|
|
|
|
|
half_dim = embedding_dim // 2 |
|
|
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) |
|
|
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) |
|
|
emb = w.to(dtype)[:, None] * emb[None, :] |
|
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) |
|
|
if embedding_dim % 2 == 1: |
|
|
emb = torch.nn.functional.pad(emb, (0, 1)) |
|
|
assert emb.shape == (w.shape[0], embedding_dim) |
|
|
return emb |
|
|
|
|
|
@property |
|
|
def guidance_scale(self): |
|
|
return self._guidance_scale |
|
|
|
|
|
@property |
|
|
def guidance_rescale(self): |
|
|
return self._guidance_rescale |
|
|
|
|
|
@property |
|
|
def clip_skip(self): |
|
|
return self._clip_skip |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@property |
|
|
def do_classifier_free_guidance(self): |
|
|
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None |
|
|
|
|
|
@property |
|
|
def cross_attention_kwargs(self): |
|
|
return self._cross_attention_kwargs |
|
|
|
|
|
@property |
|
|
def denoising_end(self): |
|
|
return self._denoising_end |
|
|
|
|
|
@property |
|
|
def num_timesteps(self): |
|
|
return self._num_timesteps |
|
|
|
|
|
|
|
|
def prepare_unet(self, attention_store, PnP: bool = False): |
|
|
attn_procs = {} |
|
|
for name in self.unet.attn_processors.keys(): |
|
|
if name.startswith("mid_block"): |
|
|
place_in_unet = "mid" |
|
|
elif name.startswith("up_blocks"): |
|
|
place_in_unet = "up" |
|
|
elif name.startswith("down_blocks"): |
|
|
place_in_unet = "down" |
|
|
else: |
|
|
continue |
|
|
|
|
|
if "attn2" in name and place_in_unet != "mid": |
|
|
attn_procs[name] = LEDITSCrossAttnProcessor( |
|
|
attention_store=attention_store, |
|
|
place_in_unet=place_in_unet, |
|
|
pnp=PnP, |
|
|
editing_prompts=self.enabled_editing_prompts, |
|
|
) |
|
|
else: |
|
|
attn_procs[name] = AttnProcessor() |
|
|
|
|
|
self.unet.set_attn_processor(attn_procs) |
|
|
|
|
|
@torch.no_grad() |
|
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
|
def __call__( |
|
|
self, |
|
|
denoising_end: Optional[float] = None, |
|
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
|
negative_prompt_2: Optional[Union[str, List[str]]] = None, |
|
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
|
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, |
|
|
ip_adapter_image: Optional[PipelineImageInput] = None, |
|
|
output_type: Optional[str] = "pil", |
|
|
return_dict: bool = True, |
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
|
guidance_rescale: float = 0.0, |
|
|
crops_coords_top_left: Tuple[int, int] = (0, 0), |
|
|
target_size: Optional[Tuple[int, int]] = None, |
|
|
editing_prompt: Optional[Union[str, List[str]]] = None, |
|
|
editing_prompt_embeddings: Optional[torch.Tensor] = None, |
|
|
editing_pooled_prompt_embeds: Optional[torch.Tensor] = None, |
|
|
reverse_editing_direction: Optional[Union[bool, List[bool]]] = False, |
|
|
edit_guidance_scale: Optional[Union[float, List[float]]] = 5, |
|
|
edit_warmup_steps: Optional[Union[int, List[int]]] = 0, |
|
|
edit_cooldown_steps: Optional[Union[int, List[int]]] = None, |
|
|
edit_threshold: Optional[Union[float, List[float]]] = 0.9, |
|
|
sem_guidance: Optional[List[torch.Tensor]] = None, |
|
|
use_cross_attn_mask: bool = False, |
|
|
use_intersect_mask: bool = False, |
|
|
user_mask: Optional[torch.Tensor] = None, |
|
|
attn_store_steps: Optional[List[int]] = [], |
|
|
store_averaged_over_steps: bool = True, |
|
|
clip_skip: Optional[int] = None, |
|
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
|
avg_diff=None, |
|
|
avg_diff_2nd=None, |
|
|
correlation_weight_factor=0.7, |
|
|
scale=2, |
|
|
scale_2nd=2, |
|
|
correlation_weight_factor = 0.7, |
|
|
init_latents: [torch.Tensor] = None, |
|
|
zs: [torch.Tensor] = None, |
|
|
**kwargs, |
|
|
): |
|
|
r""" |
|
|
The call function to the pipeline for editing. The |
|
|
[`~pipelines.ledits_pp.LEditsPPPipelineStableDiffusionXL.invert`] method has to be called beforehand. Edits |
|
|
will always be performed for the last inverted image(s). |
|
|
|
|
|
Args: |
|
|
denoising_end (`float`, *optional*): |
|
|
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be |
|
|
completed before it is intentionally prematurely terminated. As a result, the returned sample will |
|
|
still retain a substantial amount of noise as determined by the discrete timesteps selected by the |
|
|
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a |
|
|
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image |
|
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
|
less than `1`). |
|
|
negative_prompt_2 (`str` or `List[str]`, *optional*): |
|
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and |
|
|
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders |
|
|
negative_prompt_embeds (`torch.Tensor`, *optional*): |
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
|
argument. |
|
|
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*): |
|
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` |
|
|
input argument. |
|
|
ip_adapter_image: (`PipelineImageInput`, *optional*): |
|
|
Optional image input to work with IP Adapters. |
|
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
|
The output format of the generate image. Choose between |
|
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
|
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead |
|
|
of a plain tuple. |
|
|
callback (`Callable`, *optional*): |
|
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. |
|
|
callback_steps (`int`, *optional*, defaults to 1): |
|
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
|
called at every step. |
|
|
cross_attention_kwargs (`dict`, *optional*): |
|
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
|
`self.processor` in |
|
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
|
guidance_rescale (`float`, *optional*, defaults to 0.7): |
|
|
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are |
|
|
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of |
|
|
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). |
|
|
Guidance rescale factor should fix overexposure when using zero terminal SNR. |
|
|
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): |
|
|
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position |
|
|
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting |
|
|
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of |
|
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). |
|
|
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
|
For most cases, `target_size` should be set to the desired height and width of the generated image. If |
|
|
not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in |
|
|
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). |
|
|
editing_prompt (`str` or `List[str]`, *optional*): |
|
|
The prompt or prompts to guide the image generation. The image is reconstructed by setting |
|
|
`editing_prompt = None`. Guidance direction of prompt should be specified via |
|
|
`reverse_editing_direction`. |
|
|
editing_prompt_embeddings (`torch.Tensor`, *optional*): |
|
|
Pre-generated edit text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
|
If not provided, editing_prompt_embeddings will be generated from `editing_prompt` input argument. |
|
|
editing_pooled_prompt_embeddings (`torch.Tensor`, *optional*): |
|
|
Pre-generated pooled edit text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
|
weighting. If not provided, editing_prompt_embeddings will be generated from `editing_prompt` input |
|
|
argument. |
|
|
reverse_editing_direction (`bool` or `List[bool]`, *optional*, defaults to `False`): |
|
|
Whether the corresponding prompt in `editing_prompt` should be increased or decreased. |
|
|
edit_guidance_scale (`float` or `List[float]`, *optional*, defaults to 5): |
|
|
Guidance scale for guiding the image generation. If provided as list values should correspond to |
|
|
`editing_prompt`. `edit_guidance_scale` is defined as `s_e` of equation 12 of [LEDITS++ |
|
|
Paper](https://arxiv.org/abs/2301.12247). |
|
|
edit_warmup_steps (`float` or `List[float]`, *optional*, defaults to 10): |
|
|
Number of diffusion steps (for each prompt) for which guidance is not applied. |
|
|
edit_cooldown_steps (`float` or `List[float]`, *optional*, defaults to `None`): |
|
|
Number of diffusion steps (for each prompt) after which guidance is no longer applied. |
|
|
edit_threshold (`float` or `List[float]`, *optional*, defaults to 0.9): |
|
|
Masking threshold of guidance. Threshold should be proportional to the image region that is modified. |
|
|
'edit_threshold' is defined as 'λ' of equation 12 of [LEDITS++ |
|
|
Paper](https://arxiv.org/abs/2301.12247). |
|
|
sem_guidance (`List[torch.Tensor]`, *optional*): |
|
|
List of pre-generated guidance vectors to be applied at generation. Length of the list has to |
|
|
correspond to `num_inference_steps`. |
|
|
use_cross_attn_mask: |
|
|
Whether cross-attention masks are used. Cross-attention masks are always used when use_intersect_mask |
|
|
is set to true. Cross-attention masks are defined as 'M^1' of equation 12 of [LEDITS++ |
|
|
paper](https://arxiv.org/pdf/2311.16711.pdf). |
|
|
use_intersect_mask: |
|
|
Whether the masking term is calculated as intersection of cross-attention masks and masks derived from |
|
|
the noise estimate. Cross-attention mask are defined as 'M^1' and masks derived from the noise estimate |
|
|
are defined as 'M^2' of equation 12 of [LEDITS++ paper](https://arxiv.org/pdf/2311.16711.pdf). |
|
|
user_mask: |
|
|
User-provided mask for even better control over the editing process. This is helpful when LEDITS++'s |
|
|
implicit masks do not meet user preferences. |
|
|
attn_store_steps: |
|
|
Steps for which the attention maps are stored in the AttentionStore. Just for visualization purposes. |
|
|
store_averaged_over_steps: |
|
|
Whether the attention maps for the 'attn_store_steps' are stored averaged over the diffusion steps. If |
|
|
False, attention maps for each step are stores separately. Just for visualization purposes. |
|
|
clip_skip (`int`, *optional*): |
|
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
|
callback_on_step_end (`Callable`, *optional*): |
|
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
|
`callback_on_step_end_tensor_inputs`. |
|
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
|
|
|
|
Examples: |
|
|
|
|
|
Returns: |
|
|
[`~pipelines.ledits_pp.LEditsPPDiffusionPipelineOutput`] or `tuple`: |
|
|
[`~pipelines.ledits_pp.LEditsPPDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When |
|
|
returning a tuple, the first element is a list with the generated images. |
|
|
""" |
|
|
if self.inversion_steps is None: |
|
|
raise ValueError( |
|
|
"You need to invert an input image first before calling the pipeline. The `invert` method has to be called beforehand. Edits will always be performed for the last inverted image(s)." |
|
|
) |
|
|
|
|
|
eta = self.eta |
|
|
num_images_per_prompt = 1 |
|
|
|
|
|
latents = init_latents |
|
|
|
|
|
|
|
|
self.scheduler.set_timesteps(len(self.scheduler.timesteps)) |
|
|
|
|
|
if use_intersect_mask: |
|
|
use_cross_attn_mask = True |
|
|
|
|
|
if use_cross_attn_mask: |
|
|
self.smoothing = LeditsGaussianSmoothing(self.device) |
|
|
|
|
|
if user_mask is not None: |
|
|
user_mask = user_mask.to(self.device) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self._guidance_rescale = guidance_rescale |
|
|
self._clip_skip = clip_skip |
|
|
self._cross_attention_kwargs = cross_attention_kwargs |
|
|
self._denoising_end = denoising_end |
|
|
|
|
|
|
|
|
batch_size = self.batch_size |
|
|
|
|
|
device = self._execution_device |
|
|
|
|
|
if editing_prompt: |
|
|
enable_edit_guidance = True |
|
|
if isinstance(editing_prompt, str): |
|
|
editing_prompt = [editing_prompt] |
|
|
self.enabled_editing_prompts = len(editing_prompt) |
|
|
elif editing_prompt_embeddings is not None: |
|
|
enable_edit_guidance = True |
|
|
self.enabled_editing_prompts = editing_prompt_embeddings.shape[0] |
|
|
else: |
|
|
self.enabled_editing_prompts = 0 |
|
|
enable_edit_guidance = False |
|
|
print("negative_prompt", negative_prompt) |
|
|
|
|
|
text_encoder_lora_scale = ( |
|
|
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None |
|
|
) |
|
|
( |
|
|
prompt_embeds, |
|
|
edit_prompt_embeds, |
|
|
negative_pooled_prompt_embeds, |
|
|
pooled_edit_embeds, |
|
|
num_edit_tokens, |
|
|
) = self.encode_prompt( |
|
|
device=device, |
|
|
num_images_per_prompt=num_images_per_prompt, |
|
|
negative_prompt=negative_prompt, |
|
|
negative_prompt_2=negative_prompt_2, |
|
|
negative_prompt_embeds=negative_prompt_embeds, |
|
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
|
lora_scale=text_encoder_lora_scale, |
|
|
clip_skip=self.clip_skip, |
|
|
enable_edit_guidance=enable_edit_guidance, |
|
|
editing_prompt=editing_prompt, |
|
|
editing_prompt_embeds=editing_prompt_embeddings, |
|
|
editing_pooled_prompt_embeds=editing_pooled_prompt_embeds, |
|
|
avg_diff = avg_diff, |
|
|
avg_diff_2nd = avg_diff_2nd, |
|
|
correlation_weight_factor = correlation_weight_factor, |
|
|
scale=scale, |
|
|
scale_2nd=scale_2nd |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
timesteps = self.inversion_steps |
|
|
timesteps = inversion_steps |
|
|
t_to_idx = {int(v): k for k, v in enumerate(timesteps)} |
|
|
|
|
|
if use_cross_attn_mask: |
|
|
self.attention_store = LeditsAttentionStore( |
|
|
average=store_averaged_over_steps, |
|
|
batch_size=batch_size, |
|
|
max_size=(latents.shape[-2] / 4.0) * (latents.shape[-1] / 4.0), |
|
|
max_resolution=None, |
|
|
) |
|
|
self.prepare_unet(self.attention_store) |
|
|
resolution = latents.shape[-2:] |
|
|
att_res = (int(resolution[0] / 4), int(resolution[1] / 4)) |
|
|
|
|
|
|
|
|
latents = self.prepare_latents(device=device, latents=latents) |
|
|
|
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(eta) |
|
|
|
|
|
if self.text_encoder_2 is None: |
|
|
text_encoder_projection_dim = int(negative_pooled_prompt_embeds.shape[-1]) |
|
|
else: |
|
|
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim |
|
|
|
|
|
|
|
|
add_text_embeds = negative_pooled_prompt_embeds |
|
|
add_time_ids = self._get_add_time_ids( |
|
|
self.size, |
|
|
crops_coords_top_left, |
|
|
self.size, |
|
|
dtype=negative_pooled_prompt_embeds.dtype, |
|
|
text_encoder_projection_dim=text_encoder_projection_dim, |
|
|
) |
|
|
|
|
|
if enable_edit_guidance: |
|
|
prompt_embeds = torch.cat([prompt_embeds, edit_prompt_embeds], dim=0) |
|
|
add_text_embeds = torch.cat([add_text_embeds, pooled_edit_embeds], dim=0) |
|
|
edit_concepts_time_ids = add_time_ids.repeat(edit_prompt_embeds.shape[0], 1) |
|
|
add_time_ids = torch.cat([add_time_ids, edit_concepts_time_ids], dim=0) |
|
|
self.text_cross_attention_maps = [editing_prompt] if isinstance(editing_prompt, str) else editing_prompt |
|
|
|
|
|
prompt_embeds = prompt_embeds.to(device) |
|
|
add_text_embeds = add_text_embeds.to(device) |
|
|
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) |
|
|
|
|
|
if ip_adapter_image is not None: |
|
|
|
|
|
image_embeds, negative_image_embeds = self.encode_image(ip_adapter_image, device, num_images_per_prompt) |
|
|
if self.do_classifier_free_guidance: |
|
|
image_embeds = torch.cat([negative_image_embeds, image_embeds]) |
|
|
image_embeds = image_embeds.to(device) |
|
|
|
|
|
|
|
|
self.sem_guidance = None |
|
|
self.activation_mask = None |
|
|
|
|
|
if ( |
|
|
self.denoising_end is not None |
|
|
and isinstance(self.denoising_end, float) |
|
|
and self.denoising_end > 0 |
|
|
and self.denoising_end < 1 |
|
|
): |
|
|
discrete_timestep_cutoff = int( |
|
|
round( |
|
|
self.scheduler.config.num_train_timesteps |
|
|
- (self.denoising_end * self.scheduler.config.num_train_timesteps) |
|
|
) |
|
|
) |
|
|
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) |
|
|
timesteps = timesteps[:num_inference_steps] |
|
|
|
|
|
|
|
|
timestep_cond = None |
|
|
if self.unet.config.time_cond_proj_dim is not None: |
|
|
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) |
|
|
timestep_cond = self.get_guidance_scale_embedding( |
|
|
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim |
|
|
).to(device=device, dtype=latents.dtype) |
|
|
|
|
|
self._num_timesteps = len(timesteps) |
|
|
with self.progress_bar(total=self._num_timesteps) as progress_bar: |
|
|
for i, t in enumerate(timesteps): |
|
|
|
|
|
latent_model_input = torch.cat([latents] * (1 + self.enabled_editing_prompts)) |
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} |
|
|
if ip_adapter_image is not None: |
|
|
added_cond_kwargs["image_embeds"] = image_embeds |
|
|
noise_pred = self.unet( |
|
|
latent_model_input, |
|
|
t, |
|
|
encoder_hidden_states=prompt_embeds, |
|
|
cross_attention_kwargs=cross_attention_kwargs, |
|
|
added_cond_kwargs=added_cond_kwargs, |
|
|
return_dict=False, |
|
|
)[0] |
|
|
|
|
|
noise_pred_out = noise_pred.chunk(1 + self.enabled_editing_prompts) |
|
|
noise_pred_uncond = noise_pred_out[0] |
|
|
noise_pred_edit_concepts = noise_pred_out[1:] |
|
|
|
|
|
noise_guidance_edit = torch.zeros( |
|
|
noise_pred_uncond.shape, |
|
|
device=self.device, |
|
|
dtype=noise_pred_uncond.dtype, |
|
|
) |
|
|
|
|
|
if sem_guidance is not None and len(sem_guidance) > i: |
|
|
noise_guidance_edit += sem_guidance[i].to(self.device) |
|
|
|
|
|
elif enable_edit_guidance: |
|
|
if self.activation_mask is None: |
|
|
self.activation_mask = torch.zeros( |
|
|
(len(timesteps), self.enabled_editing_prompts, *noise_pred_edit_concepts[0].shape) |
|
|
) |
|
|
if self.sem_guidance is None: |
|
|
self.sem_guidance = torch.zeros((len(timesteps), *noise_pred_uncond.shape)) |
|
|
|
|
|
|
|
|
for c, noise_pred_edit_concept in enumerate(noise_pred_edit_concepts): |
|
|
if isinstance(edit_warmup_steps, list): |
|
|
edit_warmup_steps_c = edit_warmup_steps[c] |
|
|
else: |
|
|
edit_warmup_steps_c = edit_warmup_steps |
|
|
if i < edit_warmup_steps_c: |
|
|
continue |
|
|
|
|
|
if isinstance(edit_guidance_scale, list): |
|
|
edit_guidance_scale_c = edit_guidance_scale[c] |
|
|
else: |
|
|
edit_guidance_scale_c = edit_guidance_scale |
|
|
|
|
|
if isinstance(edit_threshold, list): |
|
|
edit_threshold_c = edit_threshold[c] |
|
|
else: |
|
|
edit_threshold_c = edit_threshold |
|
|
if isinstance(reverse_editing_direction, list): |
|
|
reverse_editing_direction_c = reverse_editing_direction[c] |
|
|
else: |
|
|
reverse_editing_direction_c = reverse_editing_direction |
|
|
|
|
|
if isinstance(edit_cooldown_steps, list): |
|
|
edit_cooldown_steps_c = edit_cooldown_steps[c] |
|
|
elif edit_cooldown_steps is None: |
|
|
edit_cooldown_steps_c = i + 1 |
|
|
else: |
|
|
edit_cooldown_steps_c = edit_cooldown_steps |
|
|
|
|
|
if i >= edit_cooldown_steps_c: |
|
|
continue |
|
|
|
|
|
noise_guidance_edit_tmp = noise_pred_edit_concept - noise_pred_uncond |
|
|
|
|
|
if reverse_editing_direction_c: |
|
|
noise_guidance_edit_tmp = noise_guidance_edit_tmp * -1 |
|
|
|
|
|
noise_guidance_edit_tmp = noise_guidance_edit_tmp * edit_guidance_scale_c |
|
|
|
|
|
if user_mask is not None: |
|
|
noise_guidance_edit_tmp = noise_guidance_edit_tmp * user_mask |
|
|
|
|
|
if use_cross_attn_mask: |
|
|
out = self.attention_store.aggregate_attention( |
|
|
attention_maps=self.attention_store.step_store, |
|
|
prompts=self.text_cross_attention_maps, |
|
|
res=att_res, |
|
|
from_where=["up", "down"], |
|
|
is_cross=True, |
|
|
select=self.text_cross_attention_maps.index(editing_prompt[c]), |
|
|
) |
|
|
attn_map = out[:, :, :, 1 : 1 + num_edit_tokens[c]] |
|
|
|
|
|
|
|
|
if attn_map.shape[3] != num_edit_tokens[c]: |
|
|
raise ValueError( |
|
|
f"Incorrect shape of attention_map. Expected size {num_edit_tokens[c]}, but found {attn_map.shape[3]}!" |
|
|
) |
|
|
attn_map = torch.sum(attn_map, dim=3) |
|
|
|
|
|
|
|
|
attn_map = F.pad(attn_map.unsqueeze(1), (1, 1, 1, 1), mode="reflect") |
|
|
attn_map = self.smoothing(attn_map).squeeze(1) |
|
|
|
|
|
|
|
|
if attn_map.dtype == torch.float32: |
|
|
tmp = torch.quantile(attn_map.flatten(start_dim=1), edit_threshold_c, dim=1) |
|
|
else: |
|
|
tmp = torch.quantile( |
|
|
attn_map.flatten(start_dim=1).to(torch.float32), edit_threshold_c, dim=1 |
|
|
).to(attn_map.dtype) |
|
|
attn_mask = torch.where( |
|
|
attn_map >= tmp.unsqueeze(1).unsqueeze(1).repeat(1, *att_res), 1.0, 0.0 |
|
|
) |
|
|
|
|
|
|
|
|
attn_mask = F.interpolate( |
|
|
attn_mask.unsqueeze(1), |
|
|
noise_guidance_edit_tmp.shape[-2:], |
|
|
).repeat(1, 4, 1, 1) |
|
|
self.activation_mask[i, c] = attn_mask.detach().cpu() |
|
|
if not use_intersect_mask: |
|
|
noise_guidance_edit_tmp = noise_guidance_edit_tmp * attn_mask |
|
|
|
|
|
if use_intersect_mask: |
|
|
noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp) |
|
|
noise_guidance_edit_tmp_quantile = torch.sum( |
|
|
noise_guidance_edit_tmp_quantile, dim=1, keepdim=True |
|
|
) |
|
|
noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat( |
|
|
1, self.unet.config.in_channels, 1, 1 |
|
|
) |
|
|
|
|
|
|
|
|
if noise_guidance_edit_tmp_quantile.dtype == torch.float32: |
|
|
tmp = torch.quantile( |
|
|
noise_guidance_edit_tmp_quantile.flatten(start_dim=2), |
|
|
edit_threshold_c, |
|
|
dim=2, |
|
|
keepdim=False, |
|
|
) |
|
|
else: |
|
|
tmp = torch.quantile( |
|
|
noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32), |
|
|
edit_threshold_c, |
|
|
dim=2, |
|
|
keepdim=False, |
|
|
).to(noise_guidance_edit_tmp_quantile.dtype) |
|
|
|
|
|
intersect_mask = ( |
|
|
torch.where( |
|
|
noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None], |
|
|
torch.ones_like(noise_guidance_edit_tmp), |
|
|
torch.zeros_like(noise_guidance_edit_tmp), |
|
|
) |
|
|
* attn_mask |
|
|
) |
|
|
|
|
|
self.activation_mask[i, c] = intersect_mask.detach().cpu() |
|
|
|
|
|
noise_guidance_edit_tmp = noise_guidance_edit_tmp * intersect_mask |
|
|
|
|
|
elif not use_cross_attn_mask: |
|
|
|
|
|
noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp) |
|
|
noise_guidance_edit_tmp_quantile = torch.sum( |
|
|
noise_guidance_edit_tmp_quantile, dim=1, keepdim=True |
|
|
) |
|
|
noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat(1, 4, 1, 1) |
|
|
|
|
|
|
|
|
if noise_guidance_edit_tmp_quantile.dtype == torch.float32: |
|
|
tmp = torch.quantile( |
|
|
noise_guidance_edit_tmp_quantile.flatten(start_dim=2), |
|
|
edit_threshold_c, |
|
|
dim=2, |
|
|
keepdim=False, |
|
|
) |
|
|
else: |
|
|
tmp = torch.quantile( |
|
|
noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32), |
|
|
edit_threshold_c, |
|
|
dim=2, |
|
|
keepdim=False, |
|
|
).to(noise_guidance_edit_tmp_quantile.dtype) |
|
|
|
|
|
self.activation_mask[i, c] = ( |
|
|
torch.where( |
|
|
noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None], |
|
|
torch.ones_like(noise_guidance_edit_tmp), |
|
|
torch.zeros_like(noise_guidance_edit_tmp), |
|
|
) |
|
|
.detach() |
|
|
.cpu() |
|
|
) |
|
|
|
|
|
noise_guidance_edit_tmp = torch.where( |
|
|
noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None], |
|
|
noise_guidance_edit_tmp, |
|
|
torch.zeros_like(noise_guidance_edit_tmp), |
|
|
) |
|
|
|
|
|
noise_guidance_edit += noise_guidance_edit_tmp |
|
|
|
|
|
self.sem_guidance[i] = noise_guidance_edit.detach().cpu() |
|
|
|
|
|
noise_pred = noise_pred_uncond + noise_guidance_edit |
|
|
|
|
|
|
|
|
if enable_edit_guidance and self.guidance_rescale > 0.0: |
|
|
|
|
|
noise_pred = rescale_noise_cfg( |
|
|
noise_pred, |
|
|
noise_pred_edit_concepts.mean(dim=0, keepdim=False), |
|
|
guidance_rescale=self.guidance_rescale, |
|
|
) |
|
|
|
|
|
idx = t_to_idx[int(t)] |
|
|
latents = self.scheduler.step( |
|
|
noise_pred, t, latents, variance_noise=zs[idx], **extra_step_kwargs, return_dict=False |
|
|
)[0] |
|
|
|
|
|
|
|
|
if use_cross_attn_mask: |
|
|
store_step = i in attn_store_steps |
|
|
self.attention_store.between_steps(store_step) |
|
|
|
|
|
if callback_on_step_end is not None: |
|
|
callback_kwargs = {} |
|
|
for k in callback_on_step_end_tensor_inputs: |
|
|
callback_kwargs[k] = locals()[k] |
|
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) |
|
|
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds) |
|
|
negative_pooled_prompt_embeds = callback_outputs.pop( |
|
|
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds |
|
|
) |
|
|
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids) |
|
|
|
|
|
|
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > 0 and (i + 1) % self.scheduler.order == 0): |
|
|
progress_bar.update() |
|
|
|
|
|
if XLA_AVAILABLE: |
|
|
xm.mark_step() |
|
|
|
|
|
if not output_type == "latent": |
|
|
|
|
|
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast |
|
|
|
|
|
if needs_upcasting: |
|
|
self.upcast_vae() |
|
|
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) |
|
|
|
|
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] |
|
|
|
|
|
|
|
|
if needs_upcasting: |
|
|
self.vae.to(dtype=torch.float16) |
|
|
else: |
|
|
image = latents |
|
|
|
|
|
if not output_type == "latent": |
|
|
|
|
|
if self.watermark is not None: |
|
|
image = self.watermark.apply_watermark(image) |
|
|
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
|
|
if not return_dict: |
|
|
return (image,) |
|
|
|
|
|
return LEditsPPDiffusionPipelineOutput(images=image, nsfw_content_detected=None) |
|
|
|
|
|
@torch.no_grad() |
|
|
|
|
|
def encode_image(self, image, dtype=None, height=None, width=None, resize_mode="default", crops_coords=None): |
|
|
image = self.image_processor.preprocess( |
|
|
image=image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords |
|
|
) |
|
|
resized = self.image_processor.postprocess(image=image, output_type="pil") |
|
|
|
|
|
if max(image.shape[-2:]) > self.vae.config["sample_size"] * 1.5: |
|
|
logger.warning( |
|
|
"Your input images far exceed the default resolution of the underlying diffusion model. " |
|
|
"The output images may contain severe artifacts! " |
|
|
"Consider down-sampling the input using the `height` and `width` parameters" |
|
|
) |
|
|
image = image.to(self.device, dtype=dtype) |
|
|
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast |
|
|
|
|
|
if needs_upcasting: |
|
|
image = image.float() |
|
|
self.upcast_vae() |
|
|
|
|
|
x0 = self.vae.encode(image).latent_dist.mode() |
|
|
x0 = x0.to(dtype) |
|
|
|
|
|
if needs_upcasting: |
|
|
self.vae.to(dtype=torch.float16) |
|
|
|
|
|
x0 = self.vae.config.scaling_factor * x0 |
|
|
return x0, resized |
|
|
|
|
|
@torch.no_grad() |
|
|
def invert( |
|
|
self, |
|
|
image: PipelineImageInput, |
|
|
source_prompt: str = "", |
|
|
source_guidance_scale=3.5, |
|
|
negative_prompt: str = None, |
|
|
negative_prompt_2: str = None, |
|
|
num_inversion_steps: int = 50, |
|
|
skip: float = 0.15, |
|
|
generator: Optional[torch.Generator] = None, |
|
|
crops_coords_top_left: Tuple[int, int] = (0, 0), |
|
|
num_zero_noise_steps: int = 3, |
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
|
): |
|
|
r""" |
|
|
The function to the pipeline for image inversion as described by the [LEDITS++ |
|
|
Paper](https://arxiv.org/abs/2301.12247). If the scheduler is set to [`~schedulers.DDIMScheduler`] the |
|
|
inversion proposed by [edit-friendly DPDM](https://arxiv.org/abs/2304.06140) will be performed instead. |
|
|
|
|
|
Args: |
|
|
image (`PipelineImageInput`): |
|
|
Input for the image(s) that are to be edited. Multiple input images have to default to the same aspect |
|
|
ratio. |
|
|
source_prompt (`str`, defaults to `""`): |
|
|
Prompt describing the input image that will be used for guidance during inversion. Guidance is disabled |
|
|
if the `source_prompt` is `""`. |
|
|
source_guidance_scale (`float`, defaults to `3.5`): |
|
|
Strength of guidance during inversion. |
|
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
|
less than `1`). |
|
|
negative_prompt_2 (`str` or `List[str]`, *optional*): |
|
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and |
|
|
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders |
|
|
num_inversion_steps (`int`, defaults to `50`): |
|
|
Number of total performed inversion steps after discarding the initial `skip` steps. |
|
|
skip (`float`, defaults to `0.15`): |
|
|
Portion of initial steps that will be ignored for inversion and subsequent generation. Lower values |
|
|
will lead to stronger changes to the input image. `skip` has to be between `0` and `1`. |
|
|
generator (`torch.Generator`, *optional*): |
|
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make inversion |
|
|
deterministic. |
|
|
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): |
|
|
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position |
|
|
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting |
|
|
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of |
|
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). |
|
|
num_zero_noise_steps (`int`, defaults to `3`): |
|
|
Number of final diffusion steps that will not renoise the current image. If no steps are set to zero |
|
|
SD-XL in combination with [`DPMSolverMultistepScheduler`] will produce noise artifacts. |
|
|
cross_attention_kwargs (`dict`, *optional*): |
|
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
|
`self.processor` in |
|
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
|
|
|
|
Returns: |
|
|
[`~pipelines.ledits_pp.LEditsPPInversionPipelineOutput`]: Output will contain the resized input image(s) |
|
|
and respective VAE reconstruction(s). |
|
|
""" |
|
|
|
|
|
|
|
|
self.unet.set_attn_processor(AttnProcessor()) |
|
|
|
|
|
self.eta = 1.0 |
|
|
|
|
|
self.scheduler.config.timestep_spacing = "leading" |
|
|
self.scheduler.set_timesteps(int(num_inversion_steps * (1 + skip))) |
|
|
self.inversion_steps = self.scheduler.timesteps[-num_inversion_steps:] |
|
|
timesteps = self.inversion_steps |
|
|
|
|
|
num_images_per_prompt = 1 |
|
|
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
|
if source_prompt == "": |
|
|
|
|
|
source_guidance_scale = 0.0 |
|
|
do_classifier_free_guidance = False |
|
|
else: |
|
|
do_classifier_free_guidance = source_guidance_scale > 1.0 |
|
|
|
|
|
|
|
|
x0, resized = self.encode_image(image, dtype=self.text_encoder_2.dtype) |
|
|
width = x0.shape[2] * self.vae_scale_factor |
|
|
height = x0.shape[3] * self.vae_scale_factor |
|
|
self.size = (height, width) |
|
|
|
|
|
self.batch_size = x0.shape[0] |
|
|
|
|
|
|
|
|
text_encoder_lora_scale = ( |
|
|
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None |
|
|
) |
|
|
|
|
|
if isinstance(source_prompt, str): |
|
|
source_prompt = [source_prompt] * self.batch_size |
|
|
|
|
|
( |
|
|
negative_prompt_embeds, |
|
|
prompt_embeds, |
|
|
negative_pooled_prompt_embeds, |
|
|
edit_pooled_prompt_embeds, |
|
|
_, |
|
|
) = self.encode_prompt( |
|
|
device=device, |
|
|
num_images_per_prompt=num_images_per_prompt, |
|
|
negative_prompt=negative_prompt, |
|
|
negative_prompt_2=negative_prompt_2, |
|
|
editing_prompt=source_prompt, |
|
|
lora_scale=text_encoder_lora_scale, |
|
|
enable_edit_guidance=do_classifier_free_guidance, |
|
|
) |
|
|
if self.text_encoder_2 is None: |
|
|
text_encoder_projection_dim = int(negative_pooled_prompt_embeds.shape[-1]) |
|
|
else: |
|
|
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim |
|
|
|
|
|
|
|
|
add_text_embeds = negative_pooled_prompt_embeds |
|
|
add_time_ids = self._get_add_time_ids( |
|
|
self.size, |
|
|
crops_coords_top_left, |
|
|
self.size, |
|
|
dtype=negative_prompt_embeds.dtype, |
|
|
text_encoder_projection_dim=text_encoder_projection_dim, |
|
|
) |
|
|
|
|
|
if do_classifier_free_guidance: |
|
|
negative_prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) |
|
|
add_text_embeds = torch.cat([add_text_embeds, edit_pooled_prompt_embeds], dim=0) |
|
|
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0) |
|
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(device) |
|
|
|
|
|
add_text_embeds = add_text_embeds.to(device) |
|
|
add_time_ids = add_time_ids.to(device).repeat(self.batch_size * num_images_per_prompt, 1) |
|
|
|
|
|
|
|
|
if self.vae.dtype == torch.float16 and self.vae.config.force_upcast: |
|
|
self.upcast_vae() |
|
|
x0_tmp = x0.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) |
|
|
image_rec = self.vae.decode( |
|
|
x0_tmp / self.vae.config.scaling_factor, return_dict=False, generator=generator |
|
|
)[0] |
|
|
elif self.vae.config.force_upcast: |
|
|
x0_tmp = x0.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) |
|
|
image_rec = self.vae.decode( |
|
|
x0_tmp / self.vae.config.scaling_factor, return_dict=False, generator=generator |
|
|
)[0] |
|
|
else: |
|
|
image_rec = self.vae.decode(x0 / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0] |
|
|
|
|
|
image_rec = self.image_processor.postprocess(image_rec, output_type="pil") |
|
|
|
|
|
|
|
|
variance_noise_shape = (num_inversion_steps, *x0.shape) |
|
|
|
|
|
|
|
|
t_to_idx = {int(v): k for k, v in enumerate(timesteps)} |
|
|
xts = torch.zeros(size=variance_noise_shape, device=self.device, dtype=negative_prompt_embeds.dtype) |
|
|
|
|
|
for t in reversed(timesteps): |
|
|
idx = num_inversion_steps - t_to_idx[int(t)] - 1 |
|
|
noise = randn_tensor(shape=x0.shape, generator=generator, device=self.device, dtype=x0.dtype) |
|
|
xts[idx] = self.scheduler.add_noise(x0, noise, t.unsqueeze(0)) |
|
|
xts = torch.cat([x0.unsqueeze(0), xts], dim=0) |
|
|
|
|
|
|
|
|
zs = torch.zeros(size=variance_noise_shape, device=self.device, dtype=negative_prompt_embeds.dtype) |
|
|
|
|
|
self.scheduler.set_timesteps(len(self.scheduler.timesteps)) |
|
|
|
|
|
for t in self.progress_bar(timesteps): |
|
|
idx = num_inversion_steps - t_to_idx[int(t)] - 1 |
|
|
|
|
|
xt = xts[idx + 1] |
|
|
|
|
|
latent_model_input = torch.cat([xt] * 2) if do_classifier_free_guidance else xt |
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} |
|
|
|
|
|
noise_pred = self.unet( |
|
|
latent_model_input, |
|
|
t, |
|
|
encoder_hidden_states=negative_prompt_embeds, |
|
|
cross_attention_kwargs=cross_attention_kwargs, |
|
|
added_cond_kwargs=added_cond_kwargs, |
|
|
return_dict=False, |
|
|
)[0] |
|
|
|
|
|
|
|
|
if do_classifier_free_guidance: |
|
|
noise_pred_out = noise_pred.chunk(2) |
|
|
noise_pred_uncond, noise_pred_text = noise_pred_out[0], noise_pred_out[1] |
|
|
noise_pred = noise_pred_uncond + source_guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
xtm1 = xts[idx] |
|
|
z, xtm1_corrected = compute_noise(self.scheduler, xtm1, xt, t, noise_pred, self.eta) |
|
|
zs[idx] = z |
|
|
|
|
|
|
|
|
xts[idx] = xtm1_corrected |
|
|
|
|
|
self.init_latents = xts[-1] |
|
|
zs = zs.flip(0) |
|
|
|
|
|
if num_zero_noise_steps > 0: |
|
|
zs[-num_zero_noise_steps:] = torch.zeros_like(zs[-num_zero_noise_steps:]) |
|
|
self.zs = zs |
|
|
|
|
|
return xts[-1], zs |
|
|
|
|
|
|
|
|
|
|
|
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): |
|
|
""" |
|
|
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and |
|
|
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 |
|
|
""" |
|
|
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) |
|
|
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) |
|
|
|
|
|
noise_pred_rescaled = noise_cfg * (std_text / std_cfg) |
|
|
|
|
|
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg |
|
|
return noise_cfg |
|
|
|
|
|
|
|
|
|
|
|
def compute_noise_ddim(scheduler, prev_latents, latents, timestep, noise_pred, eta): |
|
|
|
|
|
prev_timestep = timestep - scheduler.config.num_train_timesteps // scheduler.num_inference_steps |
|
|
|
|
|
|
|
|
alpha_prod_t = scheduler.alphas_cumprod[timestep] |
|
|
alpha_prod_t_prev = ( |
|
|
scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else scheduler.final_alpha_cumprod |
|
|
) |
|
|
|
|
|
beta_prod_t = 1 - alpha_prod_t |
|
|
|
|
|
|
|
|
|
|
|
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5) |
|
|
|
|
|
|
|
|
if scheduler.config.clip_sample: |
|
|
pred_original_sample = torch.clamp(pred_original_sample, -1, 1) |
|
|
|
|
|
|
|
|
|
|
|
variance = scheduler._get_variance(timestep, prev_timestep) |
|
|
std_dev_t = eta * variance ** (0.5) |
|
|
|
|
|
|
|
|
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * noise_pred |
|
|
|
|
|
|
|
|
mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction |
|
|
if variance > 0.0: |
|
|
noise = (prev_latents - mu_xt) / (variance ** (0.5) * eta) |
|
|
else: |
|
|
noise = torch.tensor([0.0]).to(latents.device) |
|
|
|
|
|
return noise, mu_xt + (eta * variance**0.5) * noise |
|
|
|
|
|
|
|
|
|
|
|
def compute_noise_sde_dpm_pp_2nd(scheduler, prev_latents, latents, timestep, noise_pred, eta): |
|
|
def first_order_update(model_output, sample): |
|
|
sigma_t, sigma_s = scheduler.sigmas[scheduler.step_index + 1], scheduler.sigmas[scheduler.step_index] |
|
|
alpha_t, sigma_t = scheduler._sigma_to_alpha_sigma_t(sigma_t) |
|
|
alpha_s, sigma_s = scheduler._sigma_to_alpha_sigma_t(sigma_s) |
|
|
lambda_t = torch.log(alpha_t) - torch.log(sigma_t) |
|
|
lambda_s = torch.log(alpha_s) - torch.log(sigma_s) |
|
|
|
|
|
h = lambda_t - lambda_s |
|
|
|
|
|
mu_xt = (sigma_t / sigma_s * torch.exp(-h)) * sample + (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output |
|
|
|
|
|
mu_xt = scheduler.dpm_solver_first_order_update( |
|
|
model_output=model_output, sample=sample, noise=torch.zeros_like(sample) |
|
|
) |
|
|
|
|
|
sigma = sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) |
|
|
if sigma > 0.0: |
|
|
noise = (prev_latents - mu_xt) / sigma |
|
|
else: |
|
|
noise = torch.tensor([0.0]).to(sample.device) |
|
|
|
|
|
prev_sample = mu_xt + sigma * noise |
|
|
return noise, prev_sample |
|
|
|
|
|
def second_order_update(model_output_list, sample): |
|
|
sigma_t, sigma_s0, sigma_s1 = ( |
|
|
scheduler.sigmas[scheduler.step_index + 1], |
|
|
scheduler.sigmas[scheduler.step_index], |
|
|
scheduler.sigmas[scheduler.step_index - 1], |
|
|
) |
|
|
|
|
|
alpha_t, sigma_t = scheduler._sigma_to_alpha_sigma_t(sigma_t) |
|
|
alpha_s0, sigma_s0 = scheduler._sigma_to_alpha_sigma_t(sigma_s0) |
|
|
alpha_s1, sigma_s1 = scheduler._sigma_to_alpha_sigma_t(sigma_s1) |
|
|
|
|
|
lambda_t = torch.log(alpha_t) - torch.log(sigma_t) |
|
|
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) |
|
|
lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1) |
|
|
|
|
|
m0, m1 = model_output_list[-1], model_output_list[-2] |
|
|
|
|
|
h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1 |
|
|
r0 = h_0 / h |
|
|
D0, D1 = m0, (1.0 / r0) * (m0 - m1) |
|
|
|
|
|
mu_xt = ( |
|
|
(sigma_t / sigma_s0 * torch.exp(-h)) * sample |
|
|
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D0 |
|
|
+ 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1 |
|
|
) |
|
|
|
|
|
sigma = sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) |
|
|
if sigma > 0.0: |
|
|
noise = (prev_latents - mu_xt) / sigma |
|
|
else: |
|
|
noise = torch.tensor([0.0]).to(sample.device) |
|
|
|
|
|
prev_sample = mu_xt + sigma * noise |
|
|
|
|
|
return noise, prev_sample |
|
|
|
|
|
if scheduler.step_index is None: |
|
|
scheduler._init_step_index(timestep) |
|
|
|
|
|
model_output = scheduler.convert_model_output(model_output=noise_pred, sample=latents) |
|
|
for i in range(scheduler.config.solver_order - 1): |
|
|
scheduler.model_outputs[i] = scheduler.model_outputs[i + 1] |
|
|
scheduler.model_outputs[-1] = model_output |
|
|
|
|
|
if scheduler.lower_order_nums < 1: |
|
|
noise, prev_sample = first_order_update(model_output, latents) |
|
|
else: |
|
|
noise, prev_sample = second_order_update(scheduler.model_outputs, latents) |
|
|
|
|
|
if scheduler.lower_order_nums < scheduler.config.solver_order: |
|
|
scheduler.lower_order_nums += 1 |
|
|
|
|
|
|
|
|
scheduler._step_index += 1 |
|
|
|
|
|
return noise, prev_sample |
|
|
|
|
|
|
|
|
|
|
|
def compute_noise(scheduler, *args): |
|
|
if isinstance(scheduler, DDIMScheduler): |
|
|
return compute_noise_ddim(scheduler, *args) |
|
|
elif ( |
|
|
isinstance(scheduler, DPMSolverMultistepScheduler) |
|
|
and scheduler.config.algorithm_type == "sde-dpmsolver++" |
|
|
and scheduler.config.solver_order == 2 |
|
|
): |
|
|
return compute_noise_sde_dpm_pp_2nd(scheduler, *args) |
|
|
else: |
|
|
raise NotImplementedError |