Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import open_clip
|
| 3 |
+
import torch
|
| 4 |
+
import requests
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from io import BytesIO
|
| 7 |
+
import time
|
| 8 |
+
import json
|
| 9 |
+
import numpy as np
|
| 10 |
+
|
| 11 |
+
# Load model and tokenizer
|
| 12 |
+
@st.cache_resource
|
| 13 |
+
def load_model():
|
| 14 |
+
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
|
| 15 |
+
tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP')
|
| 16 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 17 |
+
model.to(device)
|
| 18 |
+
return model, preprocess_val, tokenizer, device
|
| 19 |
+
|
| 20 |
+
model, preprocess_val, tokenizer, device = load_model()
|
| 21 |
+
|
| 22 |
+
# Load and process data
|
| 23 |
+
@st.cache_data
|
| 24 |
+
def load_data():
|
| 25 |
+
with open('./musinsa-final.json', 'r', encoding='utf-8') as f:
|
| 26 |
+
return json.load(f)
|
| 27 |
+
|
| 28 |
+
data = load_data()
|
| 29 |
+
|
| 30 |
+
# Helper functions
|
| 31 |
+
def load_image_from_url(url, max_retries=3):
|
| 32 |
+
for attempt in range(max_retries):
|
| 33 |
+
try:
|
| 34 |
+
response = requests.get(url, timeout=10)
|
| 35 |
+
response.raise_for_status()
|
| 36 |
+
img = Image.open(BytesIO(response.content)).convert('RGB')
|
| 37 |
+
return img
|
| 38 |
+
except (requests.RequestException, Image.UnidentifiedImageError) as e:
|
| 39 |
+
#st.warning(f"Attempt {attempt + 1} failed: {str(e)}")
|
| 40 |
+
if attempt < max_retries - 1:
|
| 41 |
+
time.sleep(1)
|
| 42 |
+
else:
|
| 43 |
+
#st.error(f"Failed to load image from {url} after {max_retries} attempts")
|
| 44 |
+
return None
|
| 45 |
+
|
| 46 |
+
def get_image_embedding_from_url(image_url):
|
| 47 |
+
image = load_image_from_url(image_url)
|
| 48 |
+
if image is None:
|
| 49 |
+
return None
|
| 50 |
+
|
| 51 |
+
image_tensor = preprocess_val(image).unsqueeze(0).to(device)
|
| 52 |
+
|
| 53 |
+
with torch.no_grad():
|
| 54 |
+
image_features = model.encode_image(image_tensor)
|
| 55 |
+
image_features /= image_features.norm(dim=-1, keepdim=True)
|
| 56 |
+
|
| 57 |
+
return image_features.cpu().numpy()
|
| 58 |
+
|
| 59 |
+
@st.cache_data
|
| 60 |
+
def process_database():
|
| 61 |
+
database_embeddings = []
|
| 62 |
+
database_info = []
|
| 63 |
+
|
| 64 |
+
for item in data:
|
| 65 |
+
image_url = item['이미지 링크'][0]
|
| 66 |
+
embedding = get_image_embedding_from_url(image_url)
|
| 67 |
+
|
| 68 |
+
if embedding is not None:
|
| 69 |
+
database_embeddings.append(embedding)
|
| 70 |
+
database_info.append({
|
| 71 |
+
'id': item['\ufeff상품 ID'],
|
| 72 |
+
'category': item['카테고리'],
|
| 73 |
+
'brand': item['브랜드명'],
|
| 74 |
+
'name': item['제품명'],
|
| 75 |
+
'price': item['정가'],
|
| 76 |
+
'discount': item['할인율'],
|
| 77 |
+
'image_url': image_url
|
| 78 |
+
})
|
| 79 |
+
else:
|
| 80 |
+
st.warning(f"Skipping item {item['상품 ID']} due to image loading failure")
|
| 81 |
+
|
| 82 |
+
if database_embeddings:
|
| 83 |
+
return np.vstack(database_embeddings), database_info
|
| 84 |
+
else:
|
| 85 |
+
st.error("No valid embeddings were generated.")
|
| 86 |
+
return None, None
|
| 87 |
+
|
| 88 |
+
database_embeddings, database_info = process_database()
|
| 89 |
+
|
| 90 |
+
def get_text_embedding(text):
|
| 91 |
+
text_tokens = tokenizer([text]).to(device)
|
| 92 |
+
|
| 93 |
+
with torch.no_grad():
|
| 94 |
+
text_features = model.encode_text(text_tokens)
|
| 95 |
+
text_features /= text_features.norm(dim=-1, keepdim=True)
|
| 96 |
+
|
| 97 |
+
return text_features.cpu().numpy()
|
| 98 |
+
|
| 99 |
+
def find_similar_images(query_embedding, top_k=5):
|
| 100 |
+
similarities = np.dot(database_embeddings, query_embedding.T).squeeze()
|
| 101 |
+
top_indices = np.argsort(similarities)[::-1][:top_k]
|
| 102 |
+
|
| 103 |
+
results = []
|
| 104 |
+
for idx in top_indices:
|
| 105 |
+
results.append({
|
| 106 |
+
'info': database_info[idx],
|
| 107 |
+
'similarity': similarities[idx]
|
| 108 |
+
})
|
| 109 |
+
|
| 110 |
+
return results
|
| 111 |
+
|
| 112 |
+
# Streamlit app
|
| 113 |
+
st.title("Fashion Search App")
|
| 114 |
+
|
| 115 |
+
search_type = st.radio("Search by:", ("Image URL", "Text"))
|
| 116 |
+
|
| 117 |
+
if search_type == "Image URL":
|
| 118 |
+
query_image_url = st.text_input("Enter image URL:")
|
| 119 |
+
if st.button("Search by Image"):
|
| 120 |
+
if query_image_url:
|
| 121 |
+
query_embedding = get_image_embedding_from_url(query_image_url)
|
| 122 |
+
if query_embedding is not None:
|
| 123 |
+
similar_images = find_similar_images(query_embedding)
|
| 124 |
+
st.image(query_image_url, caption="Query Image", use_column_width=True)
|
| 125 |
+
st.subheader("Similar Items:")
|
| 126 |
+
for img in similar_images:
|
| 127 |
+
col1, col2 = st.columns(2)
|
| 128 |
+
with col1:
|
| 129 |
+
st.image(img['info']['image_url'], use_column_width=True)
|
| 130 |
+
with col2:
|
| 131 |
+
st.write(f"Name: {img['info']['name']}")
|
| 132 |
+
st.write(f"Brand: {img['info']['brand']}")
|
| 133 |
+
st.write(f"Category: {img['info']['category']}")
|
| 134 |
+
st.write(f"Price: {img['info']['price']}")
|
| 135 |
+
st.write(f"Discount: {img['info']['discount']}%")
|
| 136 |
+
st.write(f"Similarity: {img['similarity']:.2f}")
|
| 137 |
+
else:
|
| 138 |
+
st.error("Failed to process the image. Please try another URL.")
|
| 139 |
+
else:
|
| 140 |
+
st.warning("Please enter an image URL.")
|
| 141 |
+
|
| 142 |
+
else: # Text search
|
| 143 |
+
query_text = st.text_input("Enter search text:")
|
| 144 |
+
if st.button("Search by Text"):
|
| 145 |
+
if query_text:
|
| 146 |
+
text_embedding = get_text_embedding(query_text)
|
| 147 |
+
similar_images = find_similar_images(text_embedding)
|
| 148 |
+
st.subheader("Similar Items:")
|
| 149 |
+
for img in similar_images:
|
| 150 |
+
col1, col2 = st.columns(2)
|
| 151 |
+
with col1:
|
| 152 |
+
st.image(img['info']['image_url'], use_column_width=True)
|
| 153 |
+
with col2:
|
| 154 |
+
st.write(f"Name: {img['info']['name']}")
|
| 155 |
+
st.write(f"Brand: {img['info']['brand']}")
|
| 156 |
+
st.write(f"Category: {img['info']['category']}")
|
| 157 |
+
st.write(f"Price: {img['info']['price']}")
|
| 158 |
+
st.write(f"Discount: {img['info']['discount']}%")
|
| 159 |
+
st.write(f"Similarity: {img['similarity']:.2f}")
|
| 160 |
+
else:
|
| 161 |
+
st.warning("Please enter a search text.")
|