Spaces:
Sleeping
Sleeping
latest code from main
Browse files- configs/auto_merging.yaml +2 -2
- configs/basic.yaml +1 -1
- configs/sentence_window.yaml +1 -1
- scripts/app.py +1 -1
- spaces/welcome_message.md +1 -1
- src/mythesis_chatbot/evaluation.py +58 -5
configs/auto_merging.yaml
CHANGED
|
@@ -2,7 +2,7 @@ source_doc: "Master_Thesis.pdf"
|
|
| 2 |
rag_mode: "auto-merging retrieval"
|
| 3 |
llm_openai_model: "gpt-4o-mini"
|
| 4 |
embed_model: "BAAI/bge-small-en-v1.5"
|
| 5 |
-
chunk_sizes: [2048, 512
|
| 6 |
-
similarity_top_k:
|
| 7 |
rerank_model: "cross-encoder/ms-marco-MiniLM-L-2-v2"
|
| 8 |
rerank_top_n: 2
|
|
|
|
| 2 |
rag_mode: "auto-merging retrieval"
|
| 3 |
llm_openai_model: "gpt-4o-mini"
|
| 4 |
embed_model: "BAAI/bge-small-en-v1.5"
|
| 5 |
+
chunk_sizes: [2048, 512]
|
| 6 |
+
similarity_top_k: 8
|
| 7 |
rerank_model: "cross-encoder/ms-marco-MiniLM-L-2-v2"
|
| 8 |
rerank_top_n: 2
|
configs/basic.yaml
CHANGED
|
@@ -2,6 +2,6 @@ source_doc: "Master_Thesis.pdf"
|
|
| 2 |
rag_mode: "classic retrieval"
|
| 3 |
llm_openai_model: "gpt-4o-mini"
|
| 4 |
embed_model: "BAAI/bge-small-en-v1.5"
|
| 5 |
-
similarity_top_k:
|
| 6 |
rerank_model: "cross-encoder/ms-marco-MiniLM-L-2-v2"
|
| 7 |
rerank_top_n: 2
|
|
|
|
| 2 |
rag_mode: "classic retrieval"
|
| 3 |
llm_openai_model: "gpt-4o-mini"
|
| 4 |
embed_model: "BAAI/bge-small-en-v1.5"
|
| 5 |
+
similarity_top_k: 10
|
| 6 |
rerank_model: "cross-encoder/ms-marco-MiniLM-L-2-v2"
|
| 7 |
rerank_top_n: 2
|
configs/sentence_window.yaml
CHANGED
|
@@ -2,7 +2,7 @@ source_doc: "Master_Thesis.pdf"
|
|
| 2 |
rag_mode: "sentence window retrieval"
|
| 3 |
llm_openai_model: "gpt-4o-mini"
|
| 4 |
embed_model: "BAAI/bge-small-en-v1.5"
|
| 5 |
-
sentence_window_size:
|
| 6 |
similarity_top_k: 6
|
| 7 |
rerank_model: "cross-encoder/ms-marco-MiniLM-L-2-v2"
|
| 8 |
rerank_top_n: 2
|
|
|
|
| 2 |
rag_mode: "sentence window retrieval"
|
| 3 |
llm_openai_model: "gpt-4o-mini"
|
| 4 |
embed_model: "BAAI/bge-small-en-v1.5"
|
| 5 |
+
sentence_window_size: 4
|
| 6 |
similarity_top_k: 6
|
| 7 |
rerank_model: "cross-encoder/ms-marco-MiniLM-L-2-v2"
|
| 8 |
rerank_top_n: 2
|
scripts/app.py
CHANGED
|
@@ -112,7 +112,7 @@ with open(welcome_message_path, encoding="utf-8") as f:
|
|
| 112 |
gradio_app = gr.Interface(
|
| 113 |
fn=chat_bot,
|
| 114 |
inputs=[
|
| 115 |
-
gr.Textbox(placeholder=default_message, label="Query"),
|
| 116 |
gr.Dropdown(
|
| 117 |
choices=SupportedRags.__args__,
|
| 118 |
label="RAG mode",
|
|
|
|
| 112 |
gradio_app = gr.Interface(
|
| 113 |
fn=chat_bot,
|
| 114 |
inputs=[
|
| 115 |
+
gr.Textbox(placeholder=default_message, label="Query", lines=2),
|
| 116 |
gr.Dropdown(
|
| 117 |
choices=SupportedRags.__args__,
|
| 118 |
label="RAG mode",
|
spaces/welcome_message.md
CHANGED
|
@@ -11,7 +11,7 @@ Here you get to choose between three RAG techniques:
|
|
| 11 |
- **auto-merging retrieval**
|
| 12 |
|
| 13 |
Feel free to experiment with different modes! Note that a little extra delay is to be expected when switching to another mode.
|
| 14 |
-
Also, note that all your queries (as well as system responses) are automatically logged on a remote PostgreSQL database for continuous monitoring of the deployed systems.
|
| 15 |
|
| 16 |
Each of these systems has been optimized for performance by doing a grid search on the
|
| 17 |
relevant parameters. Performance is quantified with five metrics:
|
|
|
|
| 11 |
- **auto-merging retrieval**
|
| 12 |
|
| 13 |
Feel free to experiment with different modes! Note that a little extra delay is to be expected when switching to another mode.
|
| 14 |
+
Also, note that all your queries (as well as system responses, and evaluation of these responses) are automatically logged on a remote PostgreSQL database for continuous monitoring of the deployed systems.
|
| 15 |
|
| 16 |
Each of these systems has been optimized for performance by doing a grid search on the
|
| 17 |
relevant parameters. Performance is quantified with five metrics:
|
src/mythesis_chatbot/evaluation.py
CHANGED
|
@@ -1,9 +1,11 @@
|
|
|
|
|
| 1 |
from pathlib import Path
|
|
|
|
| 2 |
|
| 3 |
import numpy as np
|
| 4 |
from tqdm import tqdm
|
| 5 |
from trulens.apps.llamaindex import TruLlama
|
| 6 |
-
from trulens.core import Feedback
|
| 7 |
from trulens.providers.openai import OpenAI
|
| 8 |
|
| 9 |
from src.mythesis_chatbot.utils import get_config_hash
|
|
@@ -23,7 +25,7 @@ def run_evals(eval_questions_path: Path, tru_recorder, query_engine):
|
|
| 23 |
|
| 24 |
|
| 25 |
# Feedback function
|
| 26 |
-
def f_answer_relevance(provider=OpenAI(), name="Answer Relevance"):
|
| 27 |
return Feedback(provider.relevance_with_cot_reasons, name=name).on_input_output()
|
| 28 |
|
| 29 |
|
|
@@ -32,7 +34,7 @@ def f_context_relevance(
|
|
| 32 |
provider=OpenAI(),
|
| 33 |
context=TruLlama.select_source_nodes().node.text,
|
| 34 |
name="Context Relevance",
|
| 35 |
-
):
|
| 36 |
return (
|
| 37 |
Feedback(provider.relevance, name=name)
|
| 38 |
.on_input()
|
|
@@ -46,7 +48,7 @@ def f_groundedness(
|
|
| 46 |
provider=OpenAI(),
|
| 47 |
context=TruLlama.select_source_nodes().node.text,
|
| 48 |
name="Groundedness",
|
| 49 |
-
):
|
| 50 |
return (
|
| 51 |
Feedback(
|
| 52 |
provider.groundedness_measure_with_cot_reasons,
|
|
@@ -59,7 +61,7 @@ def f_groundedness(
|
|
| 59 |
|
| 60 |
def get_prebuilt_trulens_recorder(
|
| 61 |
query_engine, query_engine_config: dict[str, str | int]
|
| 62 |
-
):
|
| 63 |
app_name = query_engine_config["rag_mode"]
|
| 64 |
app_version = get_config_hash(query_engine_config)
|
| 65 |
|
|
@@ -71,3 +73,54 @@ def get_prebuilt_trulens_recorder(
|
|
| 71 |
feedbacks=[f_answer_relevance(), f_context_relevance(), f_groundedness()],
|
| 72 |
)
|
| 73 |
return tru_recorder
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
from pathlib import Path
|
| 3 |
+
from typing import Literal
|
| 4 |
|
| 5 |
import numpy as np
|
| 6 |
from tqdm import tqdm
|
| 7 |
from trulens.apps.llamaindex import TruLlama
|
| 8 |
+
from trulens.core import Feedback, TruSession
|
| 9 |
from trulens.providers.openai import OpenAI
|
| 10 |
|
| 11 |
from src.mythesis_chatbot.utils import get_config_hash
|
|
|
|
| 25 |
|
| 26 |
|
| 27 |
# Feedback function
|
| 28 |
+
def f_answer_relevance(provider=OpenAI(), name="Answer Relevance") -> Feedback:
|
| 29 |
return Feedback(provider.relevance_with_cot_reasons, name=name).on_input_output()
|
| 30 |
|
| 31 |
|
|
|
|
| 34 |
provider=OpenAI(),
|
| 35 |
context=TruLlama.select_source_nodes().node.text,
|
| 36 |
name="Context Relevance",
|
| 37 |
+
) -> Feedback:
|
| 38 |
return (
|
| 39 |
Feedback(provider.relevance, name=name)
|
| 40 |
.on_input()
|
|
|
|
| 48 |
provider=OpenAI(),
|
| 49 |
context=TruLlama.select_source_nodes().node.text,
|
| 50 |
name="Groundedness",
|
| 51 |
+
) -> Feedback:
|
| 52 |
return (
|
| 53 |
Feedback(
|
| 54 |
provider.groundedness_measure_with_cot_reasons,
|
|
|
|
| 61 |
|
| 62 |
def get_prebuilt_trulens_recorder(
|
| 63 |
query_engine, query_engine_config: dict[str, str | int]
|
| 64 |
+
) -> TruLlama:
|
| 65 |
app_name = query_engine_config["rag_mode"]
|
| 66 |
app_version = get_config_hash(query_engine_config)
|
| 67 |
|
|
|
|
| 73 |
feedbacks=[f_answer_relevance(), f_context_relevance(), f_groundedness()],
|
| 74 |
)
|
| 75 |
return tru_recorder
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def get_tru_session(database: Literal["prod", "dev"]) -> TruSession:
|
| 79 |
+
|
| 80 |
+
print(f"Connecting to {database.lower()} database...")
|
| 81 |
+
|
| 82 |
+
match database.lower():
|
| 83 |
+
case "prod":
|
| 84 |
+
database_url = os.getenv("SUPABASE_PROD_CONNECTION_STRING_IPV4")
|
| 85 |
+
if database_url is None:
|
| 86 |
+
raise RuntimeError(
|
| 87 |
+
"IPv4 connection string to production database is not available as"
|
| 88 |
+
" an environment variable."
|
| 89 |
+
)
|
| 90 |
+
else:
|
| 91 |
+
print("Using IPv4 connection string...")
|
| 92 |
+
tru = TruSession(database_url=database_url)
|
| 93 |
+
return tru
|
| 94 |
+
|
| 95 |
+
case "dev":
|
| 96 |
+
database_url = os.getenv("SUPABASE_DEV_CONNECTION_STRING_IPV6")
|
| 97 |
+
if database_url:
|
| 98 |
+
try:
|
| 99 |
+
print("Using IPv6 connection string...")
|
| 100 |
+
tru = TruSession(database_url=database_url)
|
| 101 |
+
return tru
|
| 102 |
+
except Exception as e:
|
| 103 |
+
print(
|
| 104 |
+
"An error occurred while connecting to remote dev database with"
|
| 105 |
+
f" IPv6 connection string: {e}"
|
| 106 |
+
)
|
| 107 |
+
print("Reverting to IPv4")
|
| 108 |
+
else:
|
| 109 |
+
print(
|
| 110 |
+
"IPv6 connection string to dev database is not available as an"
|
| 111 |
+
" environment variable. Reverting to IPv4."
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
database_url = os.getenv("SUPABASE_DEV_CONNECTION_STRING_IPV4")
|
| 115 |
+
if database_url is None:
|
| 116 |
+
raise RuntimeError(
|
| 117 |
+
"IPv4 connection string to dev database is not available"
|
| 118 |
+
" as an environment variable."
|
| 119 |
+
)
|
| 120 |
+
else:
|
| 121 |
+
tru = TruSession(database_url=database_url)
|
| 122 |
+
return tru
|
| 123 |
+
case _:
|
| 124 |
+
raise ValueError(
|
| 125 |
+
f"Invalid database: {database}. Choose betwen 'prod' and 'dev'"
|
| 126 |
+
)
|