Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,17 +1,44 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
import torch
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
# Load model and
|
| 6 |
-
model_name = "
|
| 7 |
-
|
| 8 |
-
model =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
return
|
| 14 |
|
| 15 |
-
#
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import torch
|
| 3 |
+
import pypdfium2
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from transformers import Qwen2VLProcessor, Qwen2VLModel
|
| 6 |
|
| 7 |
+
# Load model and processor
|
| 8 |
+
model_name = "Qwen/Qwen-VL" # You may replace with your preferred VL model
|
| 9 |
+
processor = Qwen2VLProcessor.from_pretrained(model_name)
|
| 10 |
+
model = Qwen2VLModel.from_pretrained(
|
| 11 |
+
model_name,
|
| 12 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
| 13 |
+
)
|
| 14 |
+
model.eval()
|
| 15 |
|
| 16 |
+
# Convert PDF to list of PIL images (one per page)
|
| 17 |
+
def pdf_to_images(pdf_path):
|
| 18 |
+
pdf = pypdfium2.PdfDocument(pdf_path)
|
| 19 |
+
return [page.render().to_pil() for page in pdf]
|
| 20 |
|
| 21 |
+
# Generate text from each image using the vision-language model
|
| 22 |
+
def process_pdf(pdf_file):
|
| 23 |
+
images = pdf_to_images(pdf_file.name)
|
| 24 |
+
results = []
|
| 25 |
+
|
| 26 |
+
for image in images:
|
| 27 |
+
inputs = processor(images=image, return_tensors="pt").to(model.device)
|
| 28 |
+
with torch.no_grad():
|
| 29 |
+
outputs = model.generate(**inputs, max_new_tokens=256)
|
| 30 |
+
text = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
| 31 |
+
results.append(text.strip())
|
| 32 |
+
|
| 33 |
+
return "\n\n".join(results)
|
| 34 |
+
|
| 35 |
+
# Gradio UI
|
| 36 |
+
demo = gr.Interface(
|
| 37 |
+
fn=process_pdf,
|
| 38 |
+
inputs=gr.File(type="file", file_types=[".pdf"]),
|
| 39 |
+
outputs="text",
|
| 40 |
+
title="olmOCR PDF Processor"
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
if __name__ == "__main__":
|
| 44 |
+
demo.launch()
|