Spaces:
Runtime error
Runtime error
Oleg Lavrovsky
commited on
Commit
·
5eb40a3
unverified
·
0
Parent(s):
Initial release 🫂
Browse files- .gitignore +39 -0
- Dockerfile +18 -0
- README.md +8 -0
- app.py +122 -0
- requirements.txt +6 -0
.gitignore
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.py[cod]
|
| 2 |
+
.flaskenv
|
| 3 |
+
coverage.xml
|
| 4 |
+
profile/*.prof
|
| 5 |
+
|
| 6 |
+
build
|
| 7 |
+
eggs
|
| 8 |
+
parts
|
| 9 |
+
bin
|
| 10 |
+
var
|
| 11 |
+
sdist
|
| 12 |
+
develop-eggs
|
| 13 |
+
.installed.cfg
|
| 14 |
+
lib
|
| 15 |
+
lib64
|
| 16 |
+
.coverage
|
| 17 |
+
.tox
|
| 18 |
+
nosetests.xml
|
| 19 |
+
.cache
|
| 20 |
+
tests/.cache
|
| 21 |
+
.pytest_cache/
|
| 22 |
+
.vscode/
|
| 23 |
+
|
| 24 |
+
*.mo
|
| 25 |
+
|
| 26 |
+
.project
|
| 27 |
+
.pydevproject
|
| 28 |
+
/*.db
|
| 29 |
+
.idea/
|
| 30 |
+
.ropeproject/
|
| 31 |
+
|
| 32 |
+
.env
|
| 33 |
+
env/
|
| 34 |
+
debug.sh
|
| 35 |
+
.db/
|
| 36 |
+
data/
|
| 37 |
+
pip-log.txt
|
| 38 |
+
start.sh
|
| 39 |
+
debug.sh
|
Dockerfile
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Use official lightweight Python image
|
| 2 |
+
FROM python:3-slim
|
| 3 |
+
|
| 4 |
+
# Set working directory
|
| 5 |
+
WORKDIR /app
|
| 6 |
+
|
| 7 |
+
# Install dependencies
|
| 8 |
+
COPY requirements.txt .
|
| 9 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 10 |
+
|
| 11 |
+
# Copy project files
|
| 12 |
+
COPY . .
|
| 13 |
+
|
| 14 |
+
# Expose port
|
| 15 |
+
EXPOSE 8000
|
| 16 |
+
|
| 17 |
+
# Run FastAPI app with Uvicorn
|
| 18 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8000"]
|
README.md
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Apertus transformer on FastAPI
|
| 2 |
+
------------------------------
|
| 3 |
+
|
| 4 |
+
A FastAPI-based Python application that provides an API to interface with the Apertus LLM from the Swiss AI Initiative.
|
| 5 |
+
|
| 6 |
+
## TODOs
|
| 7 |
+
|
| 8 |
+
- Implement the Apertus Format API https://github.com/swiss-ai/apertus_format
|
app.py
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from contextlib import asynccontextmanager
|
| 2 |
+
from fastapi import FastAPI, HTTPException
|
| 3 |
+
from pydantic import BaseModel
|
| 4 |
+
|
| 5 |
+
from torch import cuda
|
| 6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 7 |
+
|
| 8 |
+
import logging
|
| 9 |
+
# Configure logging
|
| 10 |
+
logging.basicConfig(level=logging.INFO)
|
| 11 |
+
logger = logging.getLogger(__name__)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
model = None
|
| 15 |
+
tokenizer = None
|
| 16 |
+
|
| 17 |
+
class TextInput(BaseModel):
|
| 18 |
+
text: str
|
| 19 |
+
min_length: int = 3
|
| 20 |
+
# Apertus by default supports a context length up to 65,536 tokens.
|
| 21 |
+
max_length: int = 65536
|
| 22 |
+
|
| 23 |
+
class ModelResponse(BaseModel):
|
| 24 |
+
text: str
|
| 25 |
+
confidence: float
|
| 26 |
+
processing_time: float
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
@asynccontextmanager
|
| 30 |
+
async def lifespan(app: FastAPI):
|
| 31 |
+
"""Load the transformer model on startup"""
|
| 32 |
+
global model, tokenizer
|
| 33 |
+
try:
|
| 34 |
+
logger.info("Loading sentiment analysis model...")
|
| 35 |
+
# TODO: make this configurable
|
| 36 |
+
model_name = "swiss-ai/Apertus-8B-Instruct-2509"
|
| 37 |
+
|
| 38 |
+
# Automatically select device based on availability
|
| 39 |
+
device = "cuda" if cuda.is_available() else "cpu"
|
| 40 |
+
|
| 41 |
+
# load the tokenizer and the model
|
| 42 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 43 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 44 |
+
model_name,
|
| 45 |
+
).to(device)
|
| 46 |
+
logger.info("Model loaded successfully!")
|
| 47 |
+
except Exception as e:
|
| 48 |
+
logger.error(f"Failed to load model: {e}")
|
| 49 |
+
raise e
|
| 50 |
+
# Release resources when the app is stopped
|
| 51 |
+
yield
|
| 52 |
+
model.clear()
|
| 53 |
+
tokenizer.clear()
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
# Setup our app
|
| 57 |
+
app = FastAPI(
|
| 58 |
+
title="Apertus API",
|
| 59 |
+
description="REST API for serving Apertus models via Hugging Face transformers",
|
| 60 |
+
version="0.1.0",
|
| 61 |
+
lifespan=lifespan
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
@app.get("/predict", response_model=ModelResponse)
|
| 65 |
+
async def predict(q: str):
|
| 66 |
+
"""Generate a model response for input text"""
|
| 67 |
+
if model is None or tokenizer is None:
|
| 68 |
+
raise HTTPException(status_code=503, detail="Model not loaded")
|
| 69 |
+
|
| 70 |
+
try:
|
| 71 |
+
import time
|
| 72 |
+
start_time = time.time()
|
| 73 |
+
|
| 74 |
+
input_data = TextInput(text=q)
|
| 75 |
+
|
| 76 |
+
# Truncate text if too long
|
| 77 |
+
text = input_data.text[:input_data.max_length]
|
| 78 |
+
if len(text) == input_data.max_length:
|
| 79 |
+
logger.warning("Warning: text truncated")
|
| 80 |
+
if len(text) < input_data.min_length:
|
| 81 |
+
logger.warning("Warning: empty text, aborting")
|
| 82 |
+
return None
|
| 83 |
+
|
| 84 |
+
# Prepare the model input
|
| 85 |
+
messages_think = [
|
| 86 |
+
{"role": "user", "content": text}
|
| 87 |
+
]
|
| 88 |
+
text = tokenizer.apply_chat_template(
|
| 89 |
+
messages_think,
|
| 90 |
+
tokenize=False,
|
| 91 |
+
add_generation_prompt=True,
|
| 92 |
+
)
|
| 93 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 94 |
+
|
| 95 |
+
# Generate the output
|
| 96 |
+
generated_ids = model.generate(**model_inputs, max_new_tokens=32768)
|
| 97 |
+
|
| 98 |
+
# Get and decode the output
|
| 99 |
+
output_ids = generated_ids[0][len(model_inputs.input_ids[0]) :]
|
| 100 |
+
result = tokenizer.decode(output_ids, skip_special_tokens=True)
|
| 101 |
+
|
| 102 |
+
# Checkpoint
|
| 103 |
+
processing_time = time.time() - start_time
|
| 104 |
+
|
| 105 |
+
return ModelResponse(
|
| 106 |
+
text=result['label'],
|
| 107 |
+
confidence=result['score'],
|
| 108 |
+
processing_time=processing_time
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
except Exception as e:
|
| 112 |
+
logger.error(f"Evaluation error: {e}")
|
| 113 |
+
raise HTTPException(status_code=500, detail="Evaluation failed")
|
| 114 |
+
|
| 115 |
+
@app.get("/health")
|
| 116 |
+
async def health_check():
|
| 117 |
+
"""Health check and basic configuration"""
|
| 118 |
+
return {
|
| 119 |
+
"status": "healthy",
|
| 120 |
+
"model_loaded": model is not None,
|
| 121 |
+
"gpu_available": cuda.is_available()
|
| 122 |
+
}
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
contextlib
|
| 2 |
+
fastapi
|
| 3 |
+
pydantic
|
| 4 |
+
torch
|
| 5 |
+
transformers
|
| 6 |
+
uvicorn
|