Spaces:
Sleeping
Sleeping
Create app-backup.py
Browse files- app-backup.py +1179 -0
app-backup.py
ADDED
|
@@ -0,0 +1,1179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from huggingface_hub import HfApi
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import seaborn as sns
|
| 6 |
+
from datetime import datetime
|
| 7 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 8 |
+
from functools import lru_cache
|
| 9 |
+
import time
|
| 10 |
+
import requests
|
| 11 |
+
from collections import Counter
|
| 12 |
+
import numpy as np
|
| 13 |
+
|
| 14 |
+
st.set_page_config(page_title="HF Contributions", layout="wide", initial_sidebar_state="expanded")
|
| 15 |
+
|
| 16 |
+
# ν₯μλ UI μ€νμΌλ§
|
| 17 |
+
st.markdown("""
|
| 18 |
+
<style>
|
| 19 |
+
/* μ¬μ΄λλ° μ€νμΌλ§ */
|
| 20 |
+
[data-testid="stSidebar"] {
|
| 21 |
+
min-width: 35vw !important;
|
| 22 |
+
max-width: 35vw !important;
|
| 23 |
+
background-color: #f8f9fa;
|
| 24 |
+
padding: 1rem;
|
| 25 |
+
border-right: 1px solid #e9ecef;
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
/* ν€λ μ€νμΌλ§ */
|
| 29 |
+
h1, h2, h3 {
|
| 30 |
+
color: #1e88e5;
|
| 31 |
+
font-weight: 700;
|
| 32 |
+
}
|
| 33 |
+
h1 {
|
| 34 |
+
font-size: 2.5rem;
|
| 35 |
+
margin-bottom: 1.5rem;
|
| 36 |
+
border-bottom: 2px solid #e0e0e0;
|
| 37 |
+
padding-bottom: 0.5rem;
|
| 38 |
+
}
|
| 39 |
+
h2 {
|
| 40 |
+
font-size: 1.8rem;
|
| 41 |
+
margin-top: 1.5rem;
|
| 42 |
+
}
|
| 43 |
+
h3 {
|
| 44 |
+
font-size: 1.4rem;
|
| 45 |
+
margin-top: 1rem;
|
| 46 |
+
}
|
| 47 |
+
|
| 48 |
+
/* μΉ΄λ μ€νμΌλ§ */
|
| 49 |
+
div[data-testid="stMetric"] {
|
| 50 |
+
background-color: #f1f8fe;
|
| 51 |
+
border-radius: 10px;
|
| 52 |
+
padding: 1rem;
|
| 53 |
+
box-shadow: 0 2px 5px rgba(0,0,0,0.05);
|
| 54 |
+
margin-bottom: 1rem;
|
| 55 |
+
}
|
| 56 |
+
|
| 57 |
+
/* μ°¨νΈ μ»¨ν
μ΄λ μ€νμΌλ§ */
|
| 58 |
+
.chart-container {
|
| 59 |
+
background-color: white;
|
| 60 |
+
border-radius: 10px;
|
| 61 |
+
padding: 1rem;
|
| 62 |
+
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
|
| 63 |
+
margin: 1rem 0;
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
/* ν
μ΄λΈ μ€νμΌλ§ */
|
| 67 |
+
div[data-testid="stDataFrame"] {
|
| 68 |
+
background-color: white;
|
| 69 |
+
border-radius: 10px;
|
| 70 |
+
padding: 0.5rem;
|
| 71 |
+
box-shadow: 0 2px 5px rgba(0,0,0,0.05);
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
/* ν μ€νμΌλ§ */
|
| 75 |
+
button[data-baseweb="tab"] {
|
| 76 |
+
font-weight: 600;
|
| 77 |
+
}
|
| 78 |
+
|
| 79 |
+
/* μλΈν€λ λ°°κ²½ */
|
| 80 |
+
.subheader {
|
| 81 |
+
background-color: #f1f8fe;
|
| 82 |
+
padding: 0.5rem 1rem;
|
| 83 |
+
border-radius: 5px;
|
| 84 |
+
margin-bottom: 1rem;
|
| 85 |
+
}
|
| 86 |
+
|
| 87 |
+
/* μ 보 λ±μ§ */
|
| 88 |
+
.info-badge {
|
| 89 |
+
background-color: #e3f2fd;
|
| 90 |
+
color: #1976d2;
|
| 91 |
+
padding: 0.3rem 0.7rem;
|
| 92 |
+
border-radius: 20px;
|
| 93 |
+
display: inline-block;
|
| 94 |
+
font-weight: 500;
|
| 95 |
+
margin-right: 0.5rem;
|
| 96 |
+
}
|
| 97 |
+
|
| 98 |
+
/* νλ‘κ·Έλ μ€ λ° */
|
| 99 |
+
div[data-testid="stProgress"] {
|
| 100 |
+
height: 0.5rem !important;
|
| 101 |
+
}
|
| 102 |
+
|
| 103 |
+
/* λ²νΌ μ€νμΌλ§ */
|
| 104 |
+
.stButton button {
|
| 105 |
+
background-color: #1e88e5;
|
| 106 |
+
color: white;
|
| 107 |
+
border: none;
|
| 108 |
+
font-weight: 500;
|
| 109 |
+
}
|
| 110 |
+
|
| 111 |
+
/* κ²½κ³ /μ±κ³΅ λ©μμ§ κ°μ */
|
| 112 |
+
div[data-testid="stAlert"] {
|
| 113 |
+
border-radius: 10px;
|
| 114 |
+
margin: 1rem 0;
|
| 115 |
+
}
|
| 116 |
+
|
| 117 |
+
/* μΉ΄ν
κ³ λ¦¬ λΆμ μΉμ
*/
|
| 118 |
+
.category-section {
|
| 119 |
+
background-color: white;
|
| 120 |
+
border-radius: 10px;
|
| 121 |
+
padding: 1rem;
|
| 122 |
+
margin-bottom: 1.5rem;
|
| 123 |
+
box-shadow: 0 2px 5px rgba(0,0,0,0.05);
|
| 124 |
+
}
|
| 125 |
+
</style>
|
| 126 |
+
""", unsafe_allow_html=True)
|
| 127 |
+
|
| 128 |
+
api = HfApi()
|
| 129 |
+
|
| 130 |
+
# Cache for API responses
|
| 131 |
+
@lru_cache(maxsize=1000)
|
| 132 |
+
def cached_repo_info(repo_id, repo_type):
|
| 133 |
+
return api.repo_info(repo_id=repo_id, repo_type=repo_type)
|
| 134 |
+
|
| 135 |
+
@lru_cache(maxsize=1000)
|
| 136 |
+
def cached_list_commits(repo_id, repo_type):
|
| 137 |
+
return list(api.list_repo_commits(repo_id=repo_id, repo_type=repo_type))
|
| 138 |
+
|
| 139 |
+
@lru_cache(maxsize=100)
|
| 140 |
+
def cached_list_items(username, kind):
|
| 141 |
+
if kind == "model":
|
| 142 |
+
return list(api.list_models(author=username))
|
| 143 |
+
elif kind == "dataset":
|
| 144 |
+
return list(api.list_datasets(author=username))
|
| 145 |
+
elif kind == "space":
|
| 146 |
+
return list(api.list_spaces(author=username))
|
| 147 |
+
return []
|
| 148 |
+
|
| 149 |
+
# Function to fetch trending accounts and create stats
|
| 150 |
+
@lru_cache(maxsize=1)
|
| 151 |
+
def get_trending_accounts(limit=100):
|
| 152 |
+
try:
|
| 153 |
+
trending_data = {"spaces": [], "models": []}
|
| 154 |
+
|
| 155 |
+
# Get spaces for stats calculation
|
| 156 |
+
spaces_response = requests.get("https://huggingface.co/api/spaces",
|
| 157 |
+
params={"limit": 10000},
|
| 158 |
+
timeout=30)
|
| 159 |
+
|
| 160 |
+
# Get models for stats calculation
|
| 161 |
+
models_response = requests.get("https://huggingface.co/api/models",
|
| 162 |
+
params={"limit": 10000},
|
| 163 |
+
timeout=30)
|
| 164 |
+
|
| 165 |
+
# Process spaces data
|
| 166 |
+
spaces_owners = []
|
| 167 |
+
if spaces_response.status_code == 200:
|
| 168 |
+
spaces = spaces_response.json()
|
| 169 |
+
|
| 170 |
+
# Count spaces by owner
|
| 171 |
+
owner_counts_spaces = {}
|
| 172 |
+
for space in spaces:
|
| 173 |
+
if '/' in space.get('id', ''):
|
| 174 |
+
owner, _ = space.get('id', '').split('/', 1)
|
| 175 |
+
else:
|
| 176 |
+
owner = space.get('owner', '')
|
| 177 |
+
|
| 178 |
+
if owner != 'None':
|
| 179 |
+
owner_counts_spaces[owner] = owner_counts_spaces.get(owner, 0) + 1
|
| 180 |
+
|
| 181 |
+
# Get top owners by count for spaces
|
| 182 |
+
top_owners_spaces = sorted(owner_counts_spaces.items(), key=lambda x: x[1], reverse=True)[:limit]
|
| 183 |
+
trending_data["spaces"] = top_owners_spaces
|
| 184 |
+
spaces_owners = [owner for owner, _ in top_owners_spaces]
|
| 185 |
+
|
| 186 |
+
# Process models data
|
| 187 |
+
models_owners = []
|
| 188 |
+
if models_response.status_code == 200:
|
| 189 |
+
models = models_response.json()
|
| 190 |
+
|
| 191 |
+
# Count models by owner
|
| 192 |
+
owner_counts_models = {}
|
| 193 |
+
for model in models:
|
| 194 |
+
if '/' in model.get('id', ''):
|
| 195 |
+
owner, _ = model.get('id', '').split('/', 1)
|
| 196 |
+
else:
|
| 197 |
+
owner = model.get('owner', '')
|
| 198 |
+
|
| 199 |
+
if owner != 'None':
|
| 200 |
+
owner_counts_models[owner] = owner_counts_models.get(owner, 0) + 1
|
| 201 |
+
|
| 202 |
+
# Get top owners by count for models
|
| 203 |
+
top_owners_models = sorted(owner_counts_models.items(), key=lambda x: x[1], reverse=True)[:limit]
|
| 204 |
+
trending_data["models"] = top_owners_models
|
| 205 |
+
models_owners = [owner for owner, _ in top_owners_models]
|
| 206 |
+
|
| 207 |
+
# Combine rankings for overall trending based on appearance in both lists
|
| 208 |
+
combined_score = {}
|
| 209 |
+
for i, owner in enumerate(spaces_owners):
|
| 210 |
+
if owner not in combined_score:
|
| 211 |
+
combined_score[owner] = 0
|
| 212 |
+
combined_score[owner] += (limit - i) # Higher rank gives more points
|
| 213 |
+
|
| 214 |
+
for i, owner in enumerate(models_owners):
|
| 215 |
+
if owner not in combined_score:
|
| 216 |
+
combined_score[owner] = 0
|
| 217 |
+
combined_score[owner] += (limit - i) # Higher rank gives more points
|
| 218 |
+
|
| 219 |
+
# Sort by combined score
|
| 220 |
+
sorted_combined = sorted(combined_score.items(), key=lambda x: x[1], reverse=True)[:limit]
|
| 221 |
+
trending_authors = [owner for owner, _ in sorted_combined]
|
| 222 |
+
|
| 223 |
+
return trending_authors, trending_data["spaces"], trending_data["models"]
|
| 224 |
+
except Exception as e:
|
| 225 |
+
st.error(f"Error fetching trending accounts: {str(e)}")
|
| 226 |
+
fallback_authors = ["ritvik77", "facebook", "google", "stabilityai", "Salesforce", "tiiuae", "bigscience"]
|
| 227 |
+
return fallback_authors, [(author, 0) for author in fallback_authors], [(author, 0) for author in fallback_authors]
|
| 228 |
+
|
| 229 |
+
# Rate limiting
|
| 230 |
+
class RateLimiter:
|
| 231 |
+
def __init__(self, calls_per_second=10):
|
| 232 |
+
self.calls_per_second = calls_per_second
|
| 233 |
+
self.last_call = 0
|
| 234 |
+
|
| 235 |
+
def wait(self):
|
| 236 |
+
current_time = time.time()
|
| 237 |
+
time_since_last_call = current_time - self.last_call
|
| 238 |
+
if time_since_last_call < (1.0 / self.calls_per_second):
|
| 239 |
+
time.sleep((1.0 / self.calls_per_second) - time_since_last_call)
|
| 240 |
+
self.last_call = time.time()
|
| 241 |
+
|
| 242 |
+
rate_limiter = RateLimiter()
|
| 243 |
+
|
| 244 |
+
# Function to fetch commits for a repository (optimized)
|
| 245 |
+
def fetch_commits_for_repo(repo_id, repo_type, username, selected_year):
|
| 246 |
+
try:
|
| 247 |
+
rate_limiter.wait()
|
| 248 |
+
# Skip private/gated repos upfront
|
| 249 |
+
repo_info = cached_repo_info(repo_id, repo_type)
|
| 250 |
+
if repo_info.private or (hasattr(repo_info, 'gated') and repo_info.gated):
|
| 251 |
+
return [], 0
|
| 252 |
+
|
| 253 |
+
# Get initial commit date
|
| 254 |
+
initial_commit_date = pd.to_datetime(repo_info.created_at).tz_localize(None).date()
|
| 255 |
+
commit_dates = []
|
| 256 |
+
commit_count = 0
|
| 257 |
+
|
| 258 |
+
# Add initial commit if it's from the selected year
|
| 259 |
+
if initial_commit_date.year == selected_year:
|
| 260 |
+
commit_dates.append(initial_commit_date)
|
| 261 |
+
commit_count += 1
|
| 262 |
+
|
| 263 |
+
# Get all commits
|
| 264 |
+
commits = cached_list_commits(repo_id, repo_type)
|
| 265 |
+
for commit in commits:
|
| 266 |
+
commit_date = pd.to_datetime(commit.created_at).tz_localize(None).date()
|
| 267 |
+
if commit_date.year == selected_year:
|
| 268 |
+
commit_dates.append(commit_date)
|
| 269 |
+
commit_count += 1
|
| 270 |
+
|
| 271 |
+
return commit_dates, commit_count
|
| 272 |
+
except Exception as e:
|
| 273 |
+
return [], 0
|
| 274 |
+
|
| 275 |
+
# Function to get commit events for a user (optimized)
|
| 276 |
+
def get_commit_events(username, kind=None, selected_year=None):
|
| 277 |
+
commit_dates = []
|
| 278 |
+
items_with_type = []
|
| 279 |
+
kinds = [kind] if kind else ["model", "dataset", "space"]
|
| 280 |
+
|
| 281 |
+
for k in kinds:
|
| 282 |
+
try:
|
| 283 |
+
items = cached_list_items(username, k)
|
| 284 |
+
items_with_type.extend((item, k) for item in items)
|
| 285 |
+
repo_ids = [item.id for item in items]
|
| 286 |
+
|
| 287 |
+
# Optimized parallel fetch with chunking
|
| 288 |
+
chunk_size = 5 # Process 5 repos at a time
|
| 289 |
+
for i in range(0, len(repo_ids), chunk_size):
|
| 290 |
+
chunk = repo_ids[i:i + chunk_size]
|
| 291 |
+
with ThreadPoolExecutor(max_workers=min(5, len(chunk))) as executor:
|
| 292 |
+
future_to_repo = {
|
| 293 |
+
executor.submit(fetch_commits_for_repo, repo_id, k, username, selected_year): repo_id
|
| 294 |
+
for repo_id in chunk
|
| 295 |
+
}
|
| 296 |
+
for future in as_completed(future_to_repo):
|
| 297 |
+
repo_commits, repo_count = future.result()
|
| 298 |
+
if repo_commits: # Only extend if we got commits
|
| 299 |
+
commit_dates.extend(repo_commits)
|
| 300 |
+
except Exception as e:
|
| 301 |
+
st.warning(f"Error fetching {k}s for {username}: {str(e)}")
|
| 302 |
+
|
| 303 |
+
# Create DataFrame with all commits
|
| 304 |
+
df = pd.DataFrame(commit_dates, columns=["date"])
|
| 305 |
+
if not df.empty:
|
| 306 |
+
df = df.drop_duplicates() # Remove any duplicate dates
|
| 307 |
+
return df, items_with_type
|
| 308 |
+
|
| 309 |
+
# Calendar heatmap function (optimized)
|
| 310 |
+
def make_calendar_heatmap(df, title, year):
|
| 311 |
+
if df.empty:
|
| 312 |
+
st.info(f"No {title.lower()} found for {year}.")
|
| 313 |
+
return
|
| 314 |
+
|
| 315 |
+
# Optimize DataFrame operations
|
| 316 |
+
df["count"] = 1
|
| 317 |
+
df = df.groupby("date", as_index=False).sum()
|
| 318 |
+
df["date"] = pd.to_datetime(df["date"])
|
| 319 |
+
|
| 320 |
+
# Create date range more efficiently
|
| 321 |
+
start = pd.Timestamp(f"{year}-01-01")
|
| 322 |
+
end = pd.Timestamp(f"{year}-12-31")
|
| 323 |
+
all_days = pd.date_range(start=start, end=end)
|
| 324 |
+
|
| 325 |
+
# Optimize DataFrame creation and merging
|
| 326 |
+
heatmap_data = pd.DataFrame({"date": all_days, "count": 0})
|
| 327 |
+
heatmap_data = heatmap_data.merge(df, on="date", how="left", suffixes=("", "_y"))
|
| 328 |
+
heatmap_data["count"] = heatmap_data["count_y"].fillna(0)
|
| 329 |
+
heatmap_data = heatmap_data.drop("count_y", axis=1)
|
| 330 |
+
|
| 331 |
+
# Calculate week and day of week more efficiently
|
| 332 |
+
heatmap_data["dow"] = heatmap_data["date"].dt.dayofweek
|
| 333 |
+
heatmap_data["week"] = (heatmap_data["date"] - start).dt.days // 7
|
| 334 |
+
|
| 335 |
+
# Create pivot table more efficiently
|
| 336 |
+
pivot = heatmap_data.pivot(index="dow", columns="week", values="count").fillna(0)
|
| 337 |
+
|
| 338 |
+
# Optimize month labels calculation
|
| 339 |
+
month_labels = pd.date_range(start, end, freq="MS").strftime("%b")
|
| 340 |
+
month_positions = pd.date_range(start, end, freq="MS").map(lambda x: (x - start).days // 7)
|
| 341 |
+
|
| 342 |
+
# Create custom colormap with specific boundaries
|
| 343 |
+
from matplotlib.colors import ListedColormap, BoundaryNorm
|
| 344 |
+
colors = ['#ebedf0', '#9be9a8', '#40c463', '#30a14e', '#216e39'] # GitHub-style green colors
|
| 345 |
+
bounds = [0, 1, 3, 11, 31, float('inf')] # Boundaries for color transitions
|
| 346 |
+
cmap = ListedColormap(colors)
|
| 347 |
+
norm = BoundaryNorm(bounds, cmap.N)
|
| 348 |
+
|
| 349 |
+
# Create plot more efficiently
|
| 350 |
+
fig, ax = plt.subplots(figsize=(12, 1.5))
|
| 351 |
+
|
| 352 |
+
# Convert pivot values to integers to ensure proper color mapping
|
| 353 |
+
pivot_int = pivot.astype(int)
|
| 354 |
+
|
| 355 |
+
# Create heatmap with explicit vmin and vmax
|
| 356 |
+
sns.heatmap(pivot_int, ax=ax, cmap=cmap, norm=norm, linewidths=0.5, linecolor="white",
|
| 357 |
+
square=True, cbar=False, yticklabels=["M", "T", "W", "T", "F", "S", "S"])
|
| 358 |
+
|
| 359 |
+
ax.set_title(f"{title}", fontsize=14, pad=10)
|
| 360 |
+
ax.set_xlabel("")
|
| 361 |
+
ax.set_ylabel("")
|
| 362 |
+
ax.set_xticks(month_positions)
|
| 363 |
+
ax.set_xticklabels(month_labels, fontsize=10)
|
| 364 |
+
ax.set_yticklabels(ax.get_yticklabels(), rotation=0, fontsize=10)
|
| 365 |
+
|
| 366 |
+
# μκ°μ ν₯μμ μν figure μ€νμΌλ§
|
| 367 |
+
fig.tight_layout()
|
| 368 |
+
fig.patch.set_facecolor('#F8F9FA')
|
| 369 |
+
|
| 370 |
+
st.pyplot(fig)
|
| 371 |
+
|
| 372 |
+
# Function to create a fancy contribution radar chart
|
| 373 |
+
def create_contribution_radar(username, models_count, spaces_count, datasets_count, commits_count):
|
| 374 |
+
# Create radar chart for contribution metrics
|
| 375 |
+
categories = ['Models', 'Spaces', 'Datasets', 'Activity']
|
| 376 |
+
values = [models_count, spaces_count, datasets_count, commits_count]
|
| 377 |
+
|
| 378 |
+
# Normalize values for better visualization
|
| 379 |
+
max_vals = [100, 100, 50, 500] # Reasonable max values for each category
|
| 380 |
+
normalized = [min(v/m, 1.0) for v, m in zip(values, max_vals)]
|
| 381 |
+
|
| 382 |
+
# Create radar chart
|
| 383 |
+
angles = np.linspace(0, 2*np.pi, len(categories), endpoint=False).tolist()
|
| 384 |
+
angles += angles[:1] # Close the loop
|
| 385 |
+
|
| 386 |
+
normalized += normalized[:1] # Close the loop
|
| 387 |
+
|
| 388 |
+
fig, ax = plt.subplots(figsize=(6, 6), subplot_kw={'polar': True}, facecolor='#F8F9FA')
|
| 389 |
+
|
| 390 |
+
# Add background grid with improved styling
|
| 391 |
+
ax.set_theta_offset(np.pi / 2)
|
| 392 |
+
ax.set_theta_direction(-1)
|
| 393 |
+
ax.set_thetagrids(np.degrees(angles[:-1]), categories, fontsize=12, fontweight='bold')
|
| 394 |
+
|
| 395 |
+
# 그리λ μ€νμΌλ§ κ°μ
|
| 396 |
+
ax.grid(color='#CCCCCC', linestyle='-', linewidth=0.5, alpha=0.7)
|
| 397 |
+
|
| 398 |
+
# Draw the chart with improved color scheme
|
| 399 |
+
ax.fill(angles, normalized, color='#4CAF50', alpha=0.25)
|
| 400 |
+
ax.plot(angles, normalized, color='#4CAF50', linewidth=3)
|
| 401 |
+
|
| 402 |
+
# Add value labels with improved styling
|
| 403 |
+
for i, val in enumerate(values):
|
| 404 |
+
angle = angles[i]
|
| 405 |
+
x = (normalized[i] + 0.1) * np.cos(angle)
|
| 406 |
+
y = (normalized[i] + 0.1) * np.sin(angle)
|
| 407 |
+
ax.text(angle, normalized[i] + 0.1, str(val),
|
| 408 |
+
ha='center', va='center', fontsize=12,
|
| 409 |
+
fontweight='bold', color='#1976D2')
|
| 410 |
+
|
| 411 |
+
# Add highlight circles
|
| 412 |
+
circles = [0.25, 0.5, 0.75, 1.0]
|
| 413 |
+
for circle in circles:
|
| 414 |
+
ax.plot(angles, [circle] * len(angles), color='gray', alpha=0.3, linewidth=0.5, linestyle='--')
|
| 415 |
+
|
| 416 |
+
ax.set_title(f"{username}'s Contribution Profile", fontsize=16, pad=20, fontweight='bold')
|
| 417 |
+
|
| 418 |
+
# λ°°κ²½ μ μμ κΈ°
|
| 419 |
+
ax.set_facecolor('#F8F9FA')
|
| 420 |
+
|
| 421 |
+
return fig
|
| 422 |
+
|
| 423 |
+
# Function to create contribution distribution pie chart
|
| 424 |
+
def create_contribution_pie(model_commits, dataset_commits, space_commits):
|
| 425 |
+
labels = ['Models', 'Datasets', 'Spaces']
|
| 426 |
+
sizes = [model_commits, dataset_commits, space_commits]
|
| 427 |
+
|
| 428 |
+
# Filter out zero values
|
| 429 |
+
filtered_labels = [label for label, size in zip(labels, sizes) if size > 0]
|
| 430 |
+
filtered_sizes = [size for size in sizes if size > 0]
|
| 431 |
+
|
| 432 |
+
if not filtered_sizes:
|
| 433 |
+
return None # No data to show
|
| 434 |
+
|
| 435 |
+
# Use a more attractive color scheme
|
| 436 |
+
colors = ['#FF9800', '#2196F3', '#4CAF50']
|
| 437 |
+
filtered_colors = [color for color, size in zip(colors, sizes) if size > 0]
|
| 438 |
+
|
| 439 |
+
fig, ax = plt.subplots(figsize=(7, 7), facecolor='#F8F9FA')
|
| 440 |
+
|
| 441 |
+
# Create exploded pie chart with improved styling
|
| 442 |
+
explode = [0.1] * len(filtered_sizes) # Explode all slices for better visualization
|
| 443 |
+
|
| 444 |
+
wedges, texts, autotexts = ax.pie(
|
| 445 |
+
filtered_sizes,
|
| 446 |
+
labels=None, # We'll add custom labels
|
| 447 |
+
colors=filtered_colors,
|
| 448 |
+
autopct='%1.1f%%',
|
| 449 |
+
startangle=90,
|
| 450 |
+
shadow=True,
|
| 451 |
+
explode=explode,
|
| 452 |
+
textprops={'fontsize': 14, 'weight': 'bold'},
|
| 453 |
+
wedgeprops={'edgecolor': 'white', 'linewidth': 2}
|
| 454 |
+
)
|
| 455 |
+
|
| 456 |
+
# Customize the percentage text
|
| 457 |
+
for autotext in autotexts:
|
| 458 |
+
autotext.set_color('white')
|
| 459 |
+
autotext.set_fontsize(12)
|
| 460 |
+
autotext.set_weight('bold')
|
| 461 |
+
|
| 462 |
+
# Add legend with custom styling
|
| 463 |
+
ax.legend(
|
| 464 |
+
wedges,
|
| 465 |
+
[f"{label} ({size})" for label, size in zip(filtered_labels, filtered_sizes)],
|
| 466 |
+
title="Contribution Types",
|
| 467 |
+
loc="center left",
|
| 468 |
+
bbox_to_anchor=(0.85, 0.5),
|
| 469 |
+
fontsize=12
|
| 470 |
+
)
|
| 471 |
+
|
| 472 |
+
ax.set_title('Distribution of Contributions by Type', fontsize=16, pad=20, fontweight='bold')
|
| 473 |
+
ax.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle
|
| 474 |
+
|
| 475 |
+
return fig
|
| 476 |
+
|
| 477 |
+
# Function to create monthly activity chart
|
| 478 |
+
def create_monthly_activity(df, year):
|
| 479 |
+
if df.empty:
|
| 480 |
+
return None
|
| 481 |
+
|
| 482 |
+
# Aggregate by month
|
| 483 |
+
df['date'] = pd.to_datetime(df['date'])
|
| 484 |
+
df['month'] = df['date'].dt.month
|
| 485 |
+
df['month_name'] = df['date'].dt.strftime('%b')
|
| 486 |
+
|
| 487 |
+
# Count by month and ensure all months are present
|
| 488 |
+
month_order = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
|
| 489 |
+
counts_by_month = df.groupby('month_name')['date'].count()
|
| 490 |
+
monthly_counts = pd.Series([counts_by_month.get(m, 0) for m in month_order], index=month_order)
|
| 491 |
+
|
| 492 |
+
# Create bar chart with improved styling
|
| 493 |
+
fig, ax = plt.subplots(figsize=(14, 6), facecolor='#F8F9FA')
|
| 494 |
+
|
| 495 |
+
# Create bars with gradient colors based on activity level
|
| 496 |
+
norm = plt.Normalize(0, monthly_counts.max() if monthly_counts.max() > 0 else 1)
|
| 497 |
+
colors = plt.cm.viridis(norm(monthly_counts.values))
|
| 498 |
+
|
| 499 |
+
bars = ax.bar(monthly_counts.index, monthly_counts.values, color=colors, width=0.7)
|
| 500 |
+
|
| 501 |
+
# Highlight the month with most activity
|
| 502 |
+
if monthly_counts.max() > 0:
|
| 503 |
+
max_idx = monthly_counts.argmax()
|
| 504 |
+
bars[max_idx].set_color('#FF5722')
|
| 505 |
+
bars[max_idx].set_edgecolor('black')
|
| 506 |
+
bars[max_idx].set_linewidth(1.5)
|
| 507 |
+
|
| 508 |
+
# Add labels and styling with enhanced design
|
| 509 |
+
ax.set_title(f'Monthly Activity in {year}', fontsize=18, pad=20, fontweight='bold')
|
| 510 |
+
ax.set_xlabel('Month', fontsize=14, labelpad=10)
|
| 511 |
+
ax.set_ylabel('Number of Contributions', fontsize=14, labelpad=10)
|
| 512 |
+
|
| 513 |
+
# Add value labels on top of bars with improved styling
|
| 514 |
+
for i, count in enumerate(monthly_counts.values):
|
| 515 |
+
if count > 0:
|
| 516 |
+
ax.text(i, count + 0.5, str(int(count)), ha='center', fontsize=12, fontweight='bold')
|
| 517 |
+
|
| 518 |
+
# Add grid for better readability with improved styling
|
| 519 |
+
ax.grid(axis='y', linestyle='--', alpha=0.7, color='#CCCCCC')
|
| 520 |
+
ax.set_axisbelow(True) # Grid lines behind bars
|
| 521 |
+
|
| 522 |
+
# Style the chart borders and background
|
| 523 |
+
ax.spines['top'].set_visible(False)
|
| 524 |
+
ax.spines['right'].set_visible(False)
|
| 525 |
+
ax.spines['left'].set_linewidth(0.5)
|
| 526 |
+
ax.spines['bottom'].set_linewidth(0.5)
|
| 527 |
+
|
| 528 |
+
# Adjust tick parameters for better look
|
| 529 |
+
ax.tick_params(axis='x', labelsize=12, pad=5)
|
| 530 |
+
ax.tick_params(axis='y', labelsize=12, pad=5)
|
| 531 |
+
|
| 532 |
+
plt.tight_layout()
|
| 533 |
+
|
| 534 |
+
return fig
|
| 535 |
+
|
| 536 |
+
# Function to render follower growth simulation
|
| 537 |
+
def simulate_follower_data(username, spaces_count, models_count, total_commits):
|
| 538 |
+
# Simulate follower growth based on contribution metrics
|
| 539 |
+
# This is just a simulation for visual purposes
|
| 540 |
+
import numpy as np
|
| 541 |
+
from datetime import timedelta
|
| 542 |
+
|
| 543 |
+
# Start with a base number of followers proportional to contribution metrics
|
| 544 |
+
base_followers = max(10, int((spaces_count * 2 + models_count * 3 + total_commits/10) / 6))
|
| 545 |
+
|
| 546 |
+
# Generate timestamps for the past year
|
| 547 |
+
end_date = datetime.now()
|
| 548 |
+
start_date = end_date - timedelta(days=365)
|
| 549 |
+
dates = pd.date_range(start=start_date, end=end_date, freq='W') # Weekly data points
|
| 550 |
+
|
| 551 |
+
# Generate follower growth with some randomness
|
| 552 |
+
followers = []
|
| 553 |
+
current = base_followers / 2 # Start from half the base
|
| 554 |
+
|
| 555 |
+
for i in range(len(dates)):
|
| 556 |
+
growth_factor = 1 + (np.random.random() * 0.1) # Random growth between 0% and 10%
|
| 557 |
+
current = current * growth_factor
|
| 558 |
+
followers.append(int(current))
|
| 559 |
+
|
| 560 |
+
# Ensure end value matches our base_followers estimate
|
| 561 |
+
followers[-1] = base_followers
|
| 562 |
+
|
| 563 |
+
# Create the chart with improved styling
|
| 564 |
+
fig, ax = plt.subplots(figsize=(14, 6), facecolor='#F8F9FA')
|
| 565 |
+
|
| 566 |
+
# Create gradient line for better visualization
|
| 567 |
+
points = np.array([dates, followers]).T.reshape(-1, 1, 2)
|
| 568 |
+
segments = np.concatenate([points[:-1], points[1:]], axis=1)
|
| 569 |
+
|
| 570 |
+
from matplotlib.collections import LineCollection
|
| 571 |
+
norm = plt.Normalize(0, len(segments))
|
| 572 |
+
lc = LineCollection(segments, cmap='viridis', norm=norm, linewidth=3, alpha=0.8)
|
| 573 |
+
lc.set_array(np.arange(len(segments)))
|
| 574 |
+
line = ax.add_collection(lc)
|
| 575 |
+
|
| 576 |
+
# Add markers
|
| 577 |
+
ax.scatter(dates, followers, s=50, color='#9C27B0', alpha=0.8, zorder=10)
|
| 578 |
+
|
| 579 |
+
# Add styling with enhanced design
|
| 580 |
+
ax.set_title(f"Estimated Follower Growth for {username}", fontsize=18, pad=20, fontweight='bold')
|
| 581 |
+
ax.set_xlabel("Date", fontsize=14, labelpad=10)
|
| 582 |
+
ax.set_ylabel("Followers", fontsize=14, labelpad=10)
|
| 583 |
+
|
| 584 |
+
# Format the axes limits
|
| 585 |
+
ax.set_xlim(dates.min(), dates.max())
|
| 586 |
+
ax.set_ylim(0, max(followers) * 1.1)
|
| 587 |
+
|
| 588 |
+
# Add grid for better readability with improved styling
|
| 589 |
+
ax.grid(True, linestyle='--', alpha=0.7, color='#CCCCCC')
|
| 590 |
+
ax.set_axisbelow(True) # Grid lines behind plot
|
| 591 |
+
|
| 592 |
+
# Style the chart borders and background
|
| 593 |
+
ax.spines['top'].set_visible(False)
|
| 594 |
+
ax.spines['right'].set_visible(False)
|
| 595 |
+
ax.spines['left'].set_linewidth(0.5)
|
| 596 |
+
ax.spines['bottom'].set_linewidth(0.5)
|
| 597 |
+
|
| 598 |
+
# Adjust tick parameters for better look
|
| 599 |
+
ax.tick_params(axis='x', labelsize=12, rotation=45)
|
| 600 |
+
ax.tick_params(axis='y', labelsize=12)
|
| 601 |
+
|
| 602 |
+
# Add annotations for start and end points
|
| 603 |
+
ax.annotate(f"Start: {followers[0]}",
|
| 604 |
+
xy=(dates[0], followers[0]),
|
| 605 |
+
xytext=(10, 10),
|
| 606 |
+
textcoords='offset points',
|
| 607 |
+
fontsize=12,
|
| 608 |
+
fontweight='bold',
|
| 609 |
+
color='#9C27B0',
|
| 610 |
+
bbox=dict(boxstyle="round,pad=0.3", fc="#F3E5F5", ec="#9C27B0", alpha=0.8))
|
| 611 |
+
|
| 612 |
+
ax.annotate(f"Current: {followers[-1]}",
|
| 613 |
+
xy=(dates[-1], followers[-1]),
|
| 614 |
+
xytext=(-10, 10),
|
| 615 |
+
textcoords='offset points',
|
| 616 |
+
fontsize=12,
|
| 617 |
+
fontweight='bold',
|
| 618 |
+
color='#9C27B0',
|
| 619 |
+
ha='right',
|
| 620 |
+
bbox=dict(boxstyle="round,pad=0.3", fc="#F3E5F5", ec="#9C27B0", alpha=0.8))
|
| 621 |
+
|
| 622 |
+
plt.tight_layout()
|
| 623 |
+
|
| 624 |
+
return fig
|
| 625 |
+
|
| 626 |
+
# Function to create ranking position visualization
|
| 627 |
+
def create_ranking_chart(username, overall_rank, spaces_rank, models_rank):
|
| 628 |
+
if not (overall_rank or spaces_rank or models_rank):
|
| 629 |
+
return None
|
| 630 |
+
|
| 631 |
+
# Create a horizontal bar chart for rankings with improved styling
|
| 632 |
+
fig, ax = plt.subplots(figsize=(12, 5), facecolor='#F8F9FA')
|
| 633 |
+
|
| 634 |
+
categories = []
|
| 635 |
+
positions = []
|
| 636 |
+
colors = []
|
| 637 |
+
rank_values = []
|
| 638 |
+
|
| 639 |
+
if overall_rank:
|
| 640 |
+
categories.append('Overall')
|
| 641 |
+
positions.append(101 - overall_rank) # Invert rank for visualization (higher is better)
|
| 642 |
+
colors.append('#673AB7')
|
| 643 |
+
rank_values.append(overall_rank)
|
| 644 |
+
|
| 645 |
+
if spaces_rank:
|
| 646 |
+
categories.append('Spaces')
|
| 647 |
+
positions.append(101 - spaces_rank)
|
| 648 |
+
colors.append('#2196F3')
|
| 649 |
+
rank_values.append(spaces_rank)
|
| 650 |
+
|
| 651 |
+
if models_rank:
|
| 652 |
+
categories.append('Models')
|
| 653 |
+
positions.append(101 - models_rank)
|
| 654 |
+
colors.append('#FF9800')
|
| 655 |
+
rank_values.append(models_rank)
|
| 656 |
+
|
| 657 |
+
# Create horizontal bars with enhanced styling
|
| 658 |
+
bars = ax.barh(categories, positions, color=colors, alpha=0.8, height=0.6,
|
| 659 |
+
edgecolor='white', linewidth=1.5)
|
| 660 |
+
|
| 661 |
+
# Add rank values as text with improved styling
|
| 662 |
+
for i, bar in enumerate(bars):
|
| 663 |
+
ax.text(bar.get_width() + 2, bar.get_y() + bar.get_height()/2,
|
| 664 |
+
f'Rank #{rank_values[i]}', va='center', fontsize=12,
|
| 665 |
+
fontweight='bold', color=colors[i])
|
| 666 |
+
|
| 667 |
+
# Set chart properties with enhanced styling
|
| 668 |
+
ax.set_xlim(0, 105)
|
| 669 |
+
ax.set_title(f"Ranking Positions for {username} (Top 100)", fontsize=18, pad=20, fontweight='bold')
|
| 670 |
+
ax.set_xlabel("Percentile (higher is better)", fontsize=14, labelpad=10)
|
| 671 |
+
|
| 672 |
+
# Add explanatory text
|
| 673 |
+
ax.text(50, -0.6, "β Lower rank (higher number) | Higher rank (lower number) β",
|
| 674 |
+
ha='center', va='center', fontsize=10, fontweight='bold', color='#666666')
|
| 675 |
+
|
| 676 |
+
# Add a vertical line at 90th percentile to highlight top 10 with improved styling
|
| 677 |
+
ax.axvline(x=90, color='#FF5252', linestyle='--', alpha=0.7, linewidth=2)
|
| 678 |
+
ax.text(92, len(categories)/2, 'Top 10', color='#D32F2F', fontsize=12,
|
| 679 |
+
rotation=90, va='center', fontweight='bold')
|
| 680 |
+
|
| 681 |
+
# Style the chart borders and background
|
| 682 |
+
ax.spines['top'].set_visible(False)
|
| 683 |
+
ax.spines['right'].set_visible(False)
|
| 684 |
+
ax.spines['left'].set_linewidth(0.5)
|
| 685 |
+
ax.spines['bottom'].set_linewidth(0.5)
|
| 686 |
+
|
| 687 |
+
# Adjust tick parameters for better look
|
| 688 |
+
ax.tick_params(axis='x', labelsize=12)
|
| 689 |
+
ax.tick_params(axis='y', labelsize=14, pad=5)
|
| 690 |
+
|
| 691 |
+
# Add grid for better readability
|
| 692 |
+
ax.grid(axis='x', linestyle='--', alpha=0.5, color='#CCCCCC')
|
| 693 |
+
ax.set_axisbelow(True) # Grid lines behind bars
|
| 694 |
+
|
| 695 |
+
# Invert x-axis to show ranking position more intuitively
|
| 696 |
+
ax.invert_xaxis()
|
| 697 |
+
|
| 698 |
+
plt.tight_layout()
|
| 699 |
+
return fig
|
| 700 |
+
|
| 701 |
+
# Fetch trending accounts with a loading spinner (do this once at the beginning)
|
| 702 |
+
with st.spinner("Loading trending accounts..."):
|
| 703 |
+
trending_accounts, top_owners_spaces, top_owners_models = get_trending_accounts(limit=100)
|
| 704 |
+
|
| 705 |
+
# Sidebar
|
| 706 |
+
with st.sidebar:
|
| 707 |
+
st.markdown('<h1 style="text-align: center; color: #1E88E5;">π€ Contributor</h1>', unsafe_allow_html=True)
|
| 708 |
+
|
| 709 |
+
# Create tabs for Spaces and Models rankings - ONLY SHOWING FIRST TWO TABS
|
| 710 |
+
tab1, tab2 = st.tabs([
|
| 711 |
+
"Top 100 Overall",
|
| 712 |
+
"Top Spaces & Models"
|
| 713 |
+
])
|
| 714 |
+
|
| 715 |
+
with tab1:
|
| 716 |
+
# Show combined trending accounts list
|
| 717 |
+
st.markdown('<div class="subheader"><h3>π₯ Top 100 Contributors</h3></div>', unsafe_allow_html=True)
|
| 718 |
+
|
| 719 |
+
# Create a data frame for the table
|
| 720 |
+
if trending_accounts:
|
| 721 |
+
# Create a mapping from username to Spaces and Models rankings
|
| 722 |
+
spaces_rank = {owner: idx+1 for idx, (owner, _) in enumerate(top_owners_spaces)}
|
| 723 |
+
models_rank = {owner: idx+1 for idx, (owner, _) in enumerate(top_owners_models)}
|
| 724 |
+
|
| 725 |
+
# Create the overall ranking dataframe with trophies for top 3
|
| 726 |
+
overall_data = []
|
| 727 |
+
for idx, username in enumerate(trending_accounts[:100]):
|
| 728 |
+
# Add trophy emojis for top 3
|
| 729 |
+
rank_display = ""
|
| 730 |
+
if idx == 0:
|
| 731 |
+
rank_display = "π " # Gold trophy for 1st place
|
| 732 |
+
elif idx == 1:
|
| 733 |
+
rank_display = "π " # Silver trophy for 2nd place
|
| 734 |
+
elif idx == 2:
|
| 735 |
+
rank_display = "π " # Bronze trophy for 3rd place
|
| 736 |
+
|
| 737 |
+
# Use strings for all rankings to avoid type conversion issues
|
| 738 |
+
spaces_position = str(spaces_rank.get(username, "-"))
|
| 739 |
+
models_position = str(models_rank.get(username, "-"))
|
| 740 |
+
overall_data.append([f"{rank_display}{username}", spaces_position, models_position])
|
| 741 |
+
|
| 742 |
+
ranking_data_overall = pd.DataFrame(
|
| 743 |
+
overall_data,
|
| 744 |
+
columns=["Contributor", "Spaces Rank", "Models Rank"]
|
| 745 |
+
)
|
| 746 |
+
ranking_data_overall.index = ranking_data_overall.index + 1 # Start index from 1 for ranking
|
| 747 |
+
|
| 748 |
+
st.dataframe(
|
| 749 |
+
ranking_data_overall,
|
| 750 |
+
column_config={
|
| 751 |
+
"Contributor": st.column_config.TextColumn("Contributor"),
|
| 752 |
+
"Spaces Rank": st.column_config.TextColumn("Spaces Rank"),
|
| 753 |
+
"Models Rank": st.column_config.TextColumn("Models Rank")
|
| 754 |
+
},
|
| 755 |
+
use_container_width=True,
|
| 756 |
+
hide_index=False
|
| 757 |
+
)
|
| 758 |
+
|
| 759 |
+
with tab2:
|
| 760 |
+
# Show trending accounts by Spaces & Models
|
| 761 |
+
st.markdown('<div class="subheader"><h3>π Spaces Leaders</h3></div>', unsafe_allow_html=True)
|
| 762 |
+
|
| 763 |
+
# Create a data frame for the Spaces table with medals for top 3
|
| 764 |
+
if top_owners_spaces:
|
| 765 |
+
spaces_data = []
|
| 766 |
+
for idx, (owner, count) in enumerate(top_owners_spaces[:50]):
|
| 767 |
+
# Add medal emojis for top 3
|
| 768 |
+
rank_display = ""
|
| 769 |
+
if idx == 0:
|
| 770 |
+
rank_display = "π₯ " # Gold medal for 1st place
|
| 771 |
+
elif idx == 1:
|
| 772 |
+
rank_display = "π₯ " # Silver medal for 2nd place
|
| 773 |
+
elif idx == 2:
|
| 774 |
+
rank_display = "π₯ " # Bronze medal for 3rd place
|
| 775 |
+
|
| 776 |
+
spaces_data.append([f"{rank_display}{owner}", count])
|
| 777 |
+
|
| 778 |
+
ranking_data_spaces = pd.DataFrame(spaces_data, columns=["Contributor", "Spaces Count(Top 500 positions)"])
|
| 779 |
+
ranking_data_spaces.index = ranking_data_spaces.index + 1 # Start index from 1 for ranking
|
| 780 |
+
|
| 781 |
+
st.dataframe(
|
| 782 |
+
ranking_data_spaces,
|
| 783 |
+
column_config={
|
| 784 |
+
"Contributor": st.column_config.TextColumn("Contributor"),
|
| 785 |
+
"Spaces Count": st.column_config.NumberColumn("Spaces Count", format="%d")
|
| 786 |
+
},
|
| 787 |
+
use_container_width=True,
|
| 788 |
+
hide_index=False
|
| 789 |
+
)
|
| 790 |
+
|
| 791 |
+
# Display the top Models accounts list with medals for top 3
|
| 792 |
+
st.markdown('<div class="subheader"><h3>π§ Models Leaders</h3></div>', unsafe_allow_html=True)
|
| 793 |
+
|
| 794 |
+
# Create a data frame for the Models table with medals for top 3
|
| 795 |
+
if top_owners_models:
|
| 796 |
+
models_data = []
|
| 797 |
+
for idx, (owner, count) in enumerate(top_owners_models[:50]):
|
| 798 |
+
# Add medal emojis for top 3
|
| 799 |
+
rank_display = ""
|
| 800 |
+
if idx == 0:
|
| 801 |
+
rank_display = "π₯ " # Gold medal for 1st place
|
| 802 |
+
elif idx == 1:
|
| 803 |
+
rank_display = "π₯ " # Silver medal for 2nd place
|
| 804 |
+
elif idx == 2:
|
| 805 |
+
rank_display = "π₯ " # Bronze medal for 3rd place
|
| 806 |
+
|
| 807 |
+
models_data.append([f"{rank_display}{owner}", count])
|
| 808 |
+
|
| 809 |
+
ranking_data_models = pd.DataFrame(models_data, columns=["Contributor", "Models Count(Top 500 positions)"])
|
| 810 |
+
ranking_data_models.index = ranking_data_models.index + 1 # Start index from 1 for ranking
|
| 811 |
+
|
| 812 |
+
st.dataframe(
|
| 813 |
+
ranking_data_models,
|
| 814 |
+
column_config={
|
| 815 |
+
"Contributor": st.column_config.TextColumn("Contributor"),
|
| 816 |
+
"Models Count": st.column_config.NumberColumn("Models Count", format="%d")
|
| 817 |
+
},
|
| 818 |
+
use_container_width=True,
|
| 819 |
+
hide_index=False
|
| 820 |
+
)
|
| 821 |
+
|
| 822 |
+
# Add visual divider
|
| 823 |
+
st.markdown('<hr style="margin: 2rem 0; border-color: #e0e0e0;">', unsafe_allow_html=True)
|
| 824 |
+
|
| 825 |
+
# Display contributor selection with enhanced styling
|
| 826 |
+
st.markdown('<div class="subheader"><h3>Select Contributor</h3></div>', unsafe_allow_html=True)
|
| 827 |
+
selected_trending = st.selectbox(
|
| 828 |
+
"Choose from trending accounts",
|
| 829 |
+
options=trending_accounts[:100], # Limit to top 100
|
| 830 |
+
index=0 if trending_accounts else None,
|
| 831 |
+
key="trending_selectbox"
|
| 832 |
+
)
|
| 833 |
+
|
| 834 |
+
# Custom account input option with enhanced styling
|
| 835 |
+
st.markdown('<div style="text-align: center; margin: 15px 0; font-weight: bold;">- OR -</div>', unsafe_allow_html=True)
|
| 836 |
+
custom = st.text_input("Enter a username/organization:", placeholder="e.g. facebook, google...")
|
| 837 |
+
|
| 838 |
+
# Add visual divider
|
| 839 |
+
st.markdown('<hr style="margin: 1.5rem 0; border-color: #e0e0e0;">', unsafe_allow_html=True)
|
| 840 |
+
|
| 841 |
+
# Set username based on selection or custom input
|
| 842 |
+
if custom.strip():
|
| 843 |
+
username = custom.strip()
|
| 844 |
+
elif selected_trending:
|
| 845 |
+
username = selected_trending
|
| 846 |
+
else:
|
| 847 |
+
username = "facebook" # Default fallback
|
| 848 |
+
|
| 849 |
+
# Year selection with enhanced styling
|
| 850 |
+
st.markdown('<div class="subheader"><h3>ποΈ Time Period</h3></div>', unsafe_allow_html=True)
|
| 851 |
+
year_options = list(range(datetime.now().year, 2017, -1))
|
| 852 |
+
selected_year = st.selectbox("Select Year:", options=year_options)
|
| 853 |
+
|
| 854 |
+
# Additional options for customization with enhanced styling
|
| 855 |
+
st.markdown('<div class="subheader"><h3>βοΈ Display Options</h3></div>', unsafe_allow_html=True)
|
| 856 |
+
show_models = st.checkbox("Show Models", value=True)
|
| 857 |
+
show_datasets = st.checkbox("Show Datasets", value=True)
|
| 858 |
+
show_spaces = st.checkbox("Show Spaces", value=True)
|
| 859 |
+
|
| 860 |
+
# Main Content
|
| 861 |
+
st.markdown(f'<h1 style="text-align: center; color: #1E88E5; margin-bottom: 2rem;">π€ Hugging Face Contributions</h1>', unsafe_allow_html=True)
|
| 862 |
+
|
| 863 |
+
if username:
|
| 864 |
+
# Create a header card with contributor info
|
| 865 |
+
header_col1, header_col2 = st.columns([1, 2])
|
| 866 |
+
with header_col1:
|
| 867 |
+
st.markdown(f'<div style="background-color: #E3F2FD; padding: 20px; border-radius: 10px; border-left: 5px solid #1E88E5;">'
|
| 868 |
+
f'<h2 style="color: #1E88E5;">π€ {username}</h2>'
|
| 869 |
+
f'<p style="font-size: 16px;">Analyzing contributions for {selected_year}</p>'
|
| 870 |
+
f'<p><a href="https://huggingface.co/{username}" target="_blank" style="color: #1E88E5; font-weight: bold;">View Profile</a></p>'
|
| 871 |
+
f'</div>', unsafe_allow_html=True)
|
| 872 |
+
|
| 873 |
+
with header_col2:
|
| 874 |
+
# Add explanation about the app
|
| 875 |
+
st.markdown(f'<div style="background-color: #F3E5F5; padding: 20px; border-radius: 10px; border-left: 5px solid #9C27B0;">'
|
| 876 |
+
f'<h3 style="color: #9C27B0;">About This Analysis</h3>'
|
| 877 |
+
f'<p>This dashboard analyzes {username}\'s contributions to Hugging Face in {selected_year}, including models, datasets, and spaces.</p>'
|
| 878 |
+
f'<p style="font-style: italic; font-size: 12px;">* Some metrics like follower growth are simulated for visualization purposes.</p>'
|
| 879 |
+
f'</div>', unsafe_allow_html=True)
|
| 880 |
+
|
| 881 |
+
with st.spinner(f"Fetching contribution data for {username}..."):
|
| 882 |
+
# Initialize variables for tracking
|
| 883 |
+
overall_rank = None
|
| 884 |
+
spaces_rank = None
|
| 885 |
+
models_rank = None
|
| 886 |
+
spaces_count = 0
|
| 887 |
+
models_count = 0
|
| 888 |
+
datasets_count = 0
|
| 889 |
+
|
| 890 |
+
# Display contributor rank if in top 100
|
| 891 |
+
if username in trending_accounts[:100]:
|
| 892 |
+
overall_rank = trending_accounts.index(username) + 1
|
| 893 |
+
|
| 894 |
+
# Create a prominent ranking display
|
| 895 |
+
st.markdown(f'<div style="background-color: #FFF8E1; padding: 20px; border-radius: 10px; border-left: 5px solid #FFC107; margin: 1rem 0;">'
|
| 896 |
+
f'<h2 style="color: #FFA000; text-align: center;">π Ranked #{overall_rank} in Top Contributors</h2>'
|
| 897 |
+
f'</div>', unsafe_allow_html=True)
|
| 898 |
+
|
| 899 |
+
# Find user in spaces ranking
|
| 900 |
+
for i, (owner, count) in enumerate(top_owners_spaces):
|
| 901 |
+
if owner == username:
|
| 902 |
+
spaces_rank = i+1
|
| 903 |
+
spaces_count = count
|
| 904 |
+
break
|
| 905 |
+
|
| 906 |
+
# Find user in models ranking
|
| 907 |
+
for i, (owner, count) in enumerate(top_owners_models):
|
| 908 |
+
if owner == username:
|
| 909 |
+
models_rank = i+1
|
| 910 |
+
models_count = count
|
| 911 |
+
break
|
| 912 |
+
|
| 913 |
+
# Display ranking visualization
|
| 914 |
+
rank_chart = create_ranking_chart(username, overall_rank, spaces_rank, models_rank)
|
| 915 |
+
if rank_chart:
|
| 916 |
+
st.pyplot(rank_chart)
|
| 917 |
+
|
| 918 |
+
# Create a dictionary to store commits by type
|
| 919 |
+
commits_by_type = {}
|
| 920 |
+
commit_counts_by_type = {}
|
| 921 |
+
|
| 922 |
+
# Determine which types to fetch based on checkboxes
|
| 923 |
+
types_to_fetch = []
|
| 924 |
+
if show_models:
|
| 925 |
+
types_to_fetch.append("model")
|
| 926 |
+
if show_datasets:
|
| 927 |
+
types_to_fetch.append("dataset")
|
| 928 |
+
if show_spaces:
|
| 929 |
+
types_to_fetch.append("space")
|
| 930 |
+
|
| 931 |
+
if not types_to_fetch:
|
| 932 |
+
st.warning("Please select at least one content type to display (Models, Datasets, or Spaces)")
|
| 933 |
+
st.stop()
|
| 934 |
+
|
| 935 |
+
# Create a progress container
|
| 936 |
+
progress_container = st.container()
|
| 937 |
+
progress_container.markdown('<h3 style="color: #1E88E5;">Fetching Repository Data...</h3>', unsafe_allow_html=True)
|
| 938 |
+
progress_bar = progress_container.progress(0)
|
| 939 |
+
|
| 940 |
+
# Fetch commits for each selected type
|
| 941 |
+
for type_index, kind in enumerate(types_to_fetch):
|
| 942 |
+
try:
|
| 943 |
+
items = cached_list_items(username, kind)
|
| 944 |
+
|
| 945 |
+
# Update counts for radar chart
|
| 946 |
+
if kind == "model":
|
| 947 |
+
models_count = len(items)
|
| 948 |
+
elif kind == "dataset":
|
| 949 |
+
datasets_count = len(items)
|
| 950 |
+
elif kind == "space":
|
| 951 |
+
spaces_count = len(items)
|
| 952 |
+
|
| 953 |
+
repo_ids = [item.id for item in items]
|
| 954 |
+
|
| 955 |
+
progress_container.info(f"Found {len(repo_ids)} {kind}s for {username}")
|
| 956 |
+
|
| 957 |
+
# Process repos in chunks
|
| 958 |
+
chunk_size = 5
|
| 959 |
+
total_commits = 0
|
| 960 |
+
all_commit_dates = []
|
| 961 |
+
|
| 962 |
+
for i in range(0, len(repo_ids), chunk_size):
|
| 963 |
+
chunk = repo_ids[i:i + chunk_size]
|
| 964 |
+
with ThreadPoolExecutor(max_workers=min(5, len(chunk))) as executor:
|
| 965 |
+
future_to_repo = {
|
| 966 |
+
executor.submit(fetch_commits_for_repo, repo_id, kind, username, selected_year): repo_id
|
| 967 |
+
for repo_id in chunk
|
| 968 |
+
}
|
| 969 |
+
for future in as_completed(future_to_repo):
|
| 970 |
+
repo_commits, repo_count = future.result()
|
| 971 |
+
if repo_commits:
|
| 972 |
+
all_commit_dates.extend(repo_commits)
|
| 973 |
+
total_commits += repo_count
|
| 974 |
+
|
| 975 |
+
# Update progress for all types
|
| 976 |
+
progress_per_type = 1.0 / len(types_to_fetch)
|
| 977 |
+
current_type_progress = min(1.0, (i + len(chunk)) / max(1, len(repo_ids)))
|
| 978 |
+
overall_progress = (type_index * progress_per_type) + (current_type_progress * progress_per_type)
|
| 979 |
+
progress_bar.progress(overall_progress)
|
| 980 |
+
|
| 981 |
+
commits_by_type[kind] = all_commit_dates
|
| 982 |
+
commit_counts_by_type[kind] = total_commits
|
| 983 |
+
|
| 984 |
+
except Exception as e:
|
| 985 |
+
st.warning(f"Error fetching {kind}s for {username}: {str(e)}")
|
| 986 |
+
commits_by_type[kind] = []
|
| 987 |
+
commit_counts_by_type[kind] = 0
|
| 988 |
+
|
| 989 |
+
# Complete progress
|
| 990 |
+
progress_bar.progress(1.0)
|
| 991 |
+
progress_container.success("Data fetching complete!")
|
| 992 |
+
time.sleep(0.5) # Short pause for visual feedback
|
| 993 |
+
progress_container.empty() # Clear the progress indicators
|
| 994 |
+
|
| 995 |
+
# Calculate total commits across all types
|
| 996 |
+
total_commits = sum(commit_counts_by_type.values())
|
| 997 |
+
|
| 998 |
+
# Main dashboard layout with improved structure
|
| 999 |
+
st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">Activity Overview</h2>', unsafe_allow_html=True)
|
| 1000 |
+
|
| 1001 |
+
# Profile summary
|
| 1002 |
+
profile_col1, profile_col2 = st.columns([1, 2])
|
| 1003 |
+
|
| 1004 |
+
with profile_col1:
|
| 1005 |
+
# Create a stats card with key metrics
|
| 1006 |
+
st.markdown(f'<div style="background-color: white; padding: 20px; border-radius: 10px; box-shadow: 0 2px 10px rgba(0,0,0,0.1);">'
|
| 1007 |
+
f'<h3 style="color: #1E88E5; text-align: center; margin-bottom: 15px;">Contribution Stats</h3>'
|
| 1008 |
+
f'<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">'
|
| 1009 |
+
f'<span style="font-weight: bold;">Total Commits:</span><span>{total_commits}</span></div>'
|
| 1010 |
+
f'<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">'
|
| 1011 |
+
f'<span style="font-weight: bold;">Models:</span><span>{models_count}</span></div>'
|
| 1012 |
+
f'<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">'
|
| 1013 |
+
f'<span style="font-weight: bold;">Datasets:</span><span>{datasets_count}</span></div>'
|
| 1014 |
+
f'<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">'
|
| 1015 |
+
f'<span style="font-weight: bold;">Spaces:</span><span>{spaces_count}</span></div>'
|
| 1016 |
+
f'</div>', unsafe_allow_html=True)
|
| 1017 |
+
|
| 1018 |
+
# Type breakdown pie chart
|
| 1019 |
+
model_commits = commit_counts_by_type.get("model", 0)
|
| 1020 |
+
dataset_commits = commit_counts_by_type.get("dataset", 0)
|
| 1021 |
+
space_commits = commit_counts_by_type.get("space", 0)
|
| 1022 |
+
|
| 1023 |
+
pie_chart = create_contribution_pie(model_commits, dataset_commits, space_commits)
|
| 1024 |
+
if pie_chart:
|
| 1025 |
+
st.pyplot(pie_chart)
|
| 1026 |
+
|
| 1027 |
+
with profile_col2:
|
| 1028 |
+
# Display contribution radar chart
|
| 1029 |
+
radar_fig = create_contribution_radar(username, models_count, spaces_count, datasets_count, total_commits)
|
| 1030 |
+
st.pyplot(radar_fig)
|
| 1031 |
+
|
| 1032 |
+
# Create DataFrame for all commits
|
| 1033 |
+
all_commits = []
|
| 1034 |
+
for commits in commits_by_type.values():
|
| 1035 |
+
all_commits.extend(commits)
|
| 1036 |
+
all_df = pd.DataFrame(all_commits, columns=["date"])
|
| 1037 |
+
if not all_df.empty:
|
| 1038 |
+
all_df = all_df.drop_duplicates() # Remove any duplicate dates
|
| 1039 |
+
|
| 1040 |
+
# Calendar heatmap for all commits in a separate section
|
| 1041 |
+
st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">Contribution Calendar</h2>', unsafe_allow_html=True)
|
| 1042 |
+
|
| 1043 |
+
if not all_df.empty:
|
| 1044 |
+
make_calendar_heatmap(all_df, "All Contributions", selected_year)
|
| 1045 |
+
else:
|
| 1046 |
+
st.info(f"No contributions found for {username} in {selected_year}")
|
| 1047 |
+
|
| 1048 |
+
# Monthly activity chart
|
| 1049 |
+
st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">Monthly Activity</h2>', unsafe_allow_html=True)
|
| 1050 |
+
|
| 1051 |
+
monthly_fig = create_monthly_activity(all_df, selected_year)
|
| 1052 |
+
if monthly_fig:
|
| 1053 |
+
st.pyplot(monthly_fig)
|
| 1054 |
+
else:
|
| 1055 |
+
st.info(f"No activity data available for {username} in {selected_year}")
|
| 1056 |
+
|
| 1057 |
+
# Follower growth simulation
|
| 1058 |
+
st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">Growth Projection</h2>', unsafe_allow_html=True)
|
| 1059 |
+
st.markdown('<div style="background-color: #EDE7F6; padding: 10px; border-radius: 5px; margin-bottom: 15px;">'
|
| 1060 |
+
'<p style="font-style: italic; margin: 0;">π This is a simulation based on contribution metrics - for visualization purposes only</p>'
|
| 1061 |
+
'</div>', unsafe_allow_html=True)
|
| 1062 |
+
|
| 1063 |
+
follower_chart = simulate_follower_data(username, spaces_count, models_count, total_commits)
|
| 1064 |
+
st.pyplot(follower_chart)
|
| 1065 |
+
|
| 1066 |
+
# Analytics summary section
|
| 1067 |
+
if total_commits > 0:
|
| 1068 |
+
st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">π Analytics Summary</h2>', unsafe_allow_html=True)
|
| 1069 |
+
|
| 1070 |
+
# Contribution pattern analysis
|
| 1071 |
+
monthly_df = pd.DataFrame(all_commits, columns=["date"])
|
| 1072 |
+
monthly_df['date'] = pd.to_datetime(monthly_df['date'])
|
| 1073 |
+
monthly_df['month'] = monthly_df['date'].dt.month
|
| 1074 |
+
|
| 1075 |
+
if not monthly_df.empty:
|
| 1076 |
+
most_active_month = monthly_df['month'].value_counts().idxmax()
|
| 1077 |
+
month_name = datetime(2020, most_active_month, 1).strftime('%B')
|
| 1078 |
+
|
| 1079 |
+
# Create a summary card
|
| 1080 |
+
st.markdown(f'<div style="background-color: white; padding: 25px; border-radius: 10px; box-shadow: 0 2px 10px rgba(0,0,0,0.1);">'
|
| 1081 |
+
f'<h3 style="color: #1E88E5; border-bottom: 1px solid #E0E0E0; padding-bottom: 10px;">Activity Analysis for {username}</h3>'
|
| 1082 |
+
f'<ul style="list-style-type: none; padding-left: 5px;">'
|
| 1083 |
+
f'<li style="margin: 15px 0; font-size: 16px;">π <strong>Total Activity:</strong> {total_commits} contributions in {selected_year}</li>'
|
| 1084 |
+
f'<li style="margin: 15px 0; font-size: 16px;">ποΈ <strong>Most Active Month:</strong> {month_name} with {monthly_df["month"].value_counts().max()} contributions</li>'
|
| 1085 |
+
f'<li style="margin: 15px 0; font-size: 16px;">π§© <strong>Repository Breakdown:</strong> {models_count} Models, {spaces_count} Spaces, {datasets_count} Datasets</li>'
|
| 1086 |
+
f'</ul>', unsafe_allow_html=True)
|
| 1087 |
+
|
| 1088 |
+
# Add ranking context if available
|
| 1089 |
+
if overall_rank:
|
| 1090 |
+
percentile = 100 - overall_rank
|
| 1091 |
+
st.markdown(f'<div style="margin-top: 20px;">'
|
| 1092 |
+
f'<h3 style="color: #1E88E5; border-bottom: 1px solid #E0E0E0; padding-bottom: 10px;">Ranking Analysis</h3>'
|
| 1093 |
+
f'<ul style="list-style-type: none; padding-left: 5px;">'
|
| 1094 |
+
f'<li style="margin: 15px 0; font-size: 16px;">π <strong>Overall Ranking:</strong> #{overall_rank} (Top {percentile}% of contributors)</li>', unsafe_allow_html=True)
|
| 1095 |
+
|
| 1096 |
+
badge_html = '<div style="margin: 20px 0;">'
|
| 1097 |
+
|
| 1098 |
+
if spaces_rank and spaces_rank <= 10:
|
| 1099 |
+
badge_html += f'<span style="background-color: #FFECB3; color: #FF6F00; padding: 8px 15px; border-radius: 20px; font-weight: bold; margin-right: 10px; display: inline-block; margin-bottom: 10px;">π Elite Spaces Contributor (#{spaces_rank})</span>'
|
| 1100 |
+
elif spaces_rank and spaces_rank <= 30:
|
| 1101 |
+
badge_html += f'<span style="background-color: #E1F5FE; color: #0277BD; padding: 8px 15px; border-radius: 20px; font-weight: bold; margin-right: 10px; display: inline-block; margin-bottom: 10px;">β¨ Outstanding Spaces Contributor (#{spaces_rank})</span>'
|
| 1102 |
+
|
| 1103 |
+
if models_rank and models_rank <= 10:
|
| 1104 |
+
badge_html += f'<span style="background-color: #FFECB3; color: #FF6F00; padding: 8px 15px; border-radius: 20px; font-weight: bold; margin-right: 10px; display: inline-block; margin-bottom: 10px;">π Elite Models Contributor (#{models_rank})</span>'
|
| 1105 |
+
elif models_rank and models_rank <= 30:
|
| 1106 |
+
badge_html += f'<span style="background-color: #E1F5FE; color: #0277BD; padding: 8px 15px; border-radius: 20px; font-weight: bold; margin-right: 10px; display: inline-block; margin-bottom: 10px;">β¨ Outstanding Models Contributor (#{models_rank})</span>'
|
| 1107 |
+
|
| 1108 |
+
badge_html += '</div>'
|
| 1109 |
+
|
| 1110 |
+
# Add achievement badges
|
| 1111 |
+
if spaces_rank or models_rank:
|
| 1112 |
+
st.markdown(badge_html, unsafe_allow_html=True)
|
| 1113 |
+
|
| 1114 |
+
st.markdown('</ul></div></div>', unsafe_allow_html=True)
|
| 1115 |
+
|
| 1116 |
+
# Detailed category analysis section
|
| 1117 |
+
st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">Detailed Category Analysis</h2>', unsafe_allow_html=True)
|
| 1118 |
+
|
| 1119 |
+
# Create category cards in columns
|
| 1120 |
+
cols = st.columns(len(types_to_fetch)) if types_to_fetch else st.columns(1)
|
| 1121 |
+
|
| 1122 |
+
category_icons = {
|
| 1123 |
+
"model": "π§ ",
|
| 1124 |
+
"dataset": "π¦",
|
| 1125 |
+
"space": "π"
|
| 1126 |
+
}
|
| 1127 |
+
|
| 1128 |
+
category_colors = {
|
| 1129 |
+
"model": "#FF9800",
|
| 1130 |
+
"dataset": "#2196F3",
|
| 1131 |
+
"space": "#4CAF50"
|
| 1132 |
+
}
|
| 1133 |
+
|
| 1134 |
+
for i, kind in enumerate(types_to_fetch):
|
| 1135 |
+
with cols[i]:
|
| 1136 |
+
try:
|
| 1137 |
+
emoji = category_icons.get(kind, "π")
|
| 1138 |
+
label = kind.capitalize() + "s"
|
| 1139 |
+
color = category_colors.get(kind, "#1E88E5")
|
| 1140 |
+
|
| 1141 |
+
total = len(cached_list_items(username, kind))
|
| 1142 |
+
commits = commits_by_type.get(kind, [])
|
| 1143 |
+
commit_count = commit_counts_by_type.get(kind, 0)
|
| 1144 |
+
|
| 1145 |
+
# Create styled card header
|
| 1146 |
+
st.markdown(f'<div style="background-color: white; padding: 20px; border-radius: 10px; box-shadow: 0 2px 10px rgba(0,0,0,0.1); border-top: 5px solid {color};">'
|
| 1147 |
+
f'<h3 style="color: {color}; text-align: center;">{emoji} {label}</h3>'
|
| 1148 |
+
f'<div style="display: flex; justify-content: space-between; margin: 15px 0;">'
|
| 1149 |
+
f'<span style="font-weight: bold;">Total:</span><span>{total}</span></div>'
|
| 1150 |
+
f'<div style="display: flex; justify-content: space-between; margin-bottom: 15px;">'
|
| 1151 |
+
f'<span style="font-weight: bold;">Commits:</span><span>{commit_count}</span></div>'
|
| 1152 |
+
f'</div>', unsafe_allow_html=True)
|
| 1153 |
+
|
| 1154 |
+
# Create calendar for this type
|
| 1155 |
+
df_kind = pd.DataFrame(commits, columns=["date"])
|
| 1156 |
+
if not df_kind.empty:
|
| 1157 |
+
df_kind = df_kind.drop_duplicates() # Remove any duplicate dates
|
| 1158 |
+
make_calendar_heatmap(df_kind, f"{label} Commits", selected_year)
|
| 1159 |
+
else:
|
| 1160 |
+
st.info(f"No {label.lower()} activity in {selected_year}")
|
| 1161 |
+
|
| 1162 |
+
except Exception as e:
|
| 1163 |
+
st.warning(f"Error processing {kind.capitalize()}s: {str(e)}")
|
| 1164 |
+
# Show empty placeholder
|
| 1165 |
+
st.markdown(f'<div style="background-color: white; padding: 20px; border-radius: 10px; box-shadow: 0 2px 10px rgba(0,0,0,0.1); border-top: 5px solid #9E9E9E; text-align: center;">'
|
| 1166 |
+
f'<h3 style="color: #9E9E9E;">β οΈ Error</h3>'
|
| 1167 |
+
f'<p>Could not load {kind.capitalize()}s data</p>'
|
| 1168 |
+
f'</div>', unsafe_allow_html=True)
|
| 1169 |
+
|
| 1170 |
+
# Footer
|
| 1171 |
+
st.markdown('<hr style="margin: 3rem 0 1rem 0;">', unsafe_allow_html=True)
|
| 1172 |
+
st.markdown('<p style="text-align: center; color: #9E9E9E; font-size: 0.8rem;">Hugging Face Contributions Dashboard | Data fetched from Hugging Face API</p>', unsafe_allow_html=True)
|
| 1173 |
+
else:
|
| 1174 |
+
# If no username is selected, show welcome screen
|
| 1175 |
+
st.markdown(f'<div style="text-align: center; margin: 50px 0;">'
|
| 1176 |
+
f'<img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="width: 200px; margin-bottom: 30px;">'
|
| 1177 |
+
f'<h2>Welcome to Hugging Face Contributions Dashboard</h2>'
|
| 1178 |
+
f'<p style="font-size: 1.2rem;">Please select a contributor from the sidebar to view their activity.</p>'
|
| 1179 |
+
f'</div>', unsafe_allow_html=True)
|