Spaces:
Runtime error
Runtime error
ULMER Louis (T0240644)
commited on
Commit
·
05e69cc
1
Parent(s):
610463f
pushing the app
Browse files- __init__.py +0 -0
- app.py +32 -0
- app_gradio.py +21 -0
- backend/__init__.py +1 -0
- backend/__pycache__/__init__.cpython-310.pyc +0 -0
- backend/__pycache__/data_augmenter.cpython-310.pyc +0 -0
- backend/data_augmenter.py +176 -0
- env.yml +31 -0
- requirements.txt +18 -0
__init__.py
ADDED
|
File without changes
|
app.py
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import streamlit as st
|
| 3 |
+
from backend.data_augmenter import BackTranslatorAugmenter
|
| 4 |
+
|
| 5 |
+
os.environ['NO_PROXY'] = '127.0.0.1'
|
| 6 |
+
st.set_page_config(layout="wide", page_title="Paraphraser.AI", page_icon="🤖")
|
| 7 |
+
st.title('Paraphraser.AI 🤖')
|
| 8 |
+
st.header("An intelligent sentence paraphraser")
|
| 9 |
+
|
| 10 |
+
model_selection = st.sidebar.selectbox(
|
| 11 |
+
'Select a paraphraser:',
|
| 12 |
+
['Vladimir 🧑🏼','Maria 👩🏽'],
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
input_text = st.text_area('Please type the text to paraphrase')
|
| 16 |
+
|
| 17 |
+
class DummyAugmenter:
|
| 18 |
+
def __init__(self, in_lang="en", out_lang="ru") -> None:
|
| 19 |
+
pass
|
| 20 |
+
def back_translate(self,text):
|
| 21 |
+
return "La marche des vertueux est seumée d'obstacles"
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
if model_selection == 'Vladimir 🧑🏼':
|
| 25 |
+
model = BackTranslatorAugmenter(in_lang="en", out_lang="ru")
|
| 26 |
+
if model_selection == 'Maria 👩🏽':
|
| 27 |
+
model = BackTranslatorAugmenter(in_lang="en", out_lang="es")
|
| 28 |
+
|
| 29 |
+
if input_text:
|
| 30 |
+
st.header(f"Paraphrased text :")
|
| 31 |
+
st.write("".join(model.back_translate(input_text)))
|
| 32 |
+
|
app_gradio.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
os.environ['NO_PROXY'] = '127.0.0.1'
|
| 4 |
+
|
| 5 |
+
class DummyAugmenter:
|
| 6 |
+
def __init__(self, in_lang="en", out_lang="ru") -> None:
|
| 7 |
+
pass
|
| 8 |
+
def back_translate(self,text):
|
| 9 |
+
return "La marche des vertueux est seumée d'obstacles"
|
| 10 |
+
|
| 11 |
+
def greet(name):
|
| 12 |
+
return "Hello " + name + "!"
|
| 13 |
+
|
| 14 |
+
with gr.Blocks() as demo:
|
| 15 |
+
name = gr.Textbox(label="Please type the text to paraphrase")
|
| 16 |
+
output = gr.Textbox(label="Output Box")
|
| 17 |
+
|
| 18 |
+
greet_btn = gr.Button("Greet")
|
| 19 |
+
greet_btn.click(fn=greet, inputs=name, outputs=output)
|
| 20 |
+
|
| 21 |
+
demo.launch()
|
backend/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from .data_augmenter import BackTranslatorAugmenter
|
backend/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (226 Bytes). View file
|
|
|
backend/__pycache__/data_augmenter.cpython-310.pyc
ADDED
|
Binary file (5.57 kB). View file
|
|
|
backend/data_augmenter.py
ADDED
|
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import time
|
| 3 |
+
from tqdm import tqdm
|
| 4 |
+
import pandas as pd
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 6 |
+
import os
|
| 7 |
+
import json
|
| 8 |
+
import torch
|
| 9 |
+
from dotenv import load_dotenv
|
| 10 |
+
|
| 11 |
+
load_dotenv()
|
| 12 |
+
from nltk.tokenize import sent_tokenize
|
| 13 |
+
|
| 14 |
+
wd = os.path.dirname(os.path.realpath(__file__))
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class BackTranslatorAugmenter:
|
| 18 |
+
"""
|
| 19 |
+
A class that performs BackTranslation in order to do data augmentation.
|
| 20 |
+
For best results we recommend using bottleneck languages (`out_lang`)
|
| 21 |
+
such as russian (ru) and
|
| 22 |
+
spanish (es).
|
| 23 |
+
|
| 24 |
+
Example
|
| 25 |
+
-------
|
| 26 |
+
.. code-block:: python
|
| 27 |
+
|
| 28 |
+
data_augmenter = BackTranslatorAugmenter(out_lang="es")
|
| 29 |
+
text = "I want to augment this sentence"
|
| 30 |
+
print(text)
|
| 31 |
+
data_augmenter.back_translate(text, verbose=True)
|
| 32 |
+
|
| 33 |
+
:param in_lang: the text input language, defaults to "en"
|
| 34 |
+
:type in_lang: str, optional
|
| 35 |
+
:param out_lang: the language to translate with, defaults to "ru"
|
| 36 |
+
:type out_lang: str, optional
|
| 37 |
+
"""
|
| 38 |
+
|
| 39 |
+
def __init__(self, in_lang="en", out_lang="ru") -> None:
|
| 40 |
+
if torch.cuda.is_available():
|
| 41 |
+
self.device = "cuda"
|
| 42 |
+
else:
|
| 43 |
+
self.device = "cpu"
|
| 44 |
+
|
| 45 |
+
self.in_tokenizer = AutoTokenizer.from_pretrained(
|
| 46 |
+
f"Helsinki-NLP/opus-mt-{in_lang}-{out_lang}",
|
| 47 |
+
cache_dir=os.getenv("TRANSFORMERS_CACHE"),
|
| 48 |
+
)
|
| 49 |
+
self.in_model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 50 |
+
f"Helsinki-NLP/opus-mt-{in_lang}-{out_lang}",
|
| 51 |
+
cache_dir=os.getenv("TRANSFORMERS_CACHE"),
|
| 52 |
+
).to(self.device)
|
| 53 |
+
self.out_tokenizer = AutoTokenizer.from_pretrained(
|
| 54 |
+
f"Helsinki-NLP/opus-mt-{out_lang}-{in_lang}",
|
| 55 |
+
cache_dir=os.getenv("TRANSFORMERS_CACHE"),
|
| 56 |
+
)
|
| 57 |
+
self.out_model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 58 |
+
f"Helsinki-NLP/opus-mt-{out_lang}-{in_lang}",
|
| 59 |
+
cache_dir=os.getenv("TRANSFORMERS_CACHE"),
|
| 60 |
+
).to(self.device)
|
| 61 |
+
|
| 62 |
+
def back_translate(self, text, verbose=False):
|
| 63 |
+
if verbose:
|
| 64 |
+
tic = time.time()
|
| 65 |
+
encoded_text = self.in_tokenizer(
|
| 66 |
+
text, return_tensors="pt", padding=True, truncation=True
|
| 67 |
+
).to(self.device)
|
| 68 |
+
in_generated_ids = self.in_model.generate(**encoded_text)
|
| 69 |
+
|
| 70 |
+
in_preds = [
|
| 71 |
+
self.in_tokenizer.decode(
|
| 72 |
+
gen_id, skip_special_tokens=True, clean_up_tokenization_spaces=True
|
| 73 |
+
)
|
| 74 |
+
for gen_id in in_generated_ids
|
| 75 |
+
]
|
| 76 |
+
if verbose:
|
| 77 |
+
print("in_pred : ", in_preds)
|
| 78 |
+
encoded_text = self.out_tokenizer(
|
| 79 |
+
in_preds, return_tensors="pt", padding=True, truncation=True
|
| 80 |
+
).to(self.device)
|
| 81 |
+
out_generated_ids = self.out_model.generate(**encoded_text)
|
| 82 |
+
out_preds = [
|
| 83 |
+
self.out_tokenizer.decode(
|
| 84 |
+
gen_id, skip_special_tokens=True, clean_up_tokenization_spaces=True
|
| 85 |
+
)
|
| 86 |
+
for gen_id in out_generated_ids
|
| 87 |
+
]
|
| 88 |
+
|
| 89 |
+
if verbose:
|
| 90 |
+
tac = time.time()
|
| 91 |
+
print("out_pred : ", out_preds)
|
| 92 |
+
print("Elapsed time : ", tac - tic)
|
| 93 |
+
return out_preds
|
| 94 |
+
|
| 95 |
+
def back_translate_long(self, text, verbose=False):
|
| 96 |
+
sentences = sent_tokenize(text)
|
| 97 |
+
return [" ".join(self.back_translate(sentences, verbose=verbose))]
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def do_backtranslation(**args):
|
| 101 |
+
df = pd.read_csv(args["input_data_path"])[:1]
|
| 102 |
+
data_augmenter = BackTranslatorAugmenter(
|
| 103 |
+
in_lang=args["in_lang"], out_lang=args["out_lang"]
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
dict_res = {col_name: [] for _, col_name in args["col_map"].items()}
|
| 107 |
+
|
| 108 |
+
for i in tqdm(range(0, len(df), args["batch_size"])):
|
| 109 |
+
for old_col, new_col in args["col_map"].items():
|
| 110 |
+
dict_res[new_col] += data_augmenter.back_translate(
|
| 111 |
+
list(df[old_col].iloc[i : i + args["batch_size"]])
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
augmented_df = pd.DataFrame(dict_res)
|
| 115 |
+
os.makedirs(os.path.dirname(args["output_data_path"]), exist_ok=True)
|
| 116 |
+
augmented_df.to_csv(args["output_data_path"])
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
if __name__ == "__main__":
|
| 120 |
+
parser = argparse.ArgumentParser(
|
| 121 |
+
description="Back Translate a dataset for better training"
|
| 122 |
+
)
|
| 123 |
+
parser.add_argument(
|
| 124 |
+
"-in_lang",
|
| 125 |
+
type=str,
|
| 126 |
+
default="en",
|
| 127 |
+
help="""the text input language, defaults to "en",
|
| 128 |
+
one can choose between {'es','ru','en','fr','de','pt','zh'}
|
| 129 |
+
but please have a look at https://huggingface.co/Helsinki-NLP to make sure the language
|
| 130 |
+
pair you ask for is available""",
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
parser.add_argument(
|
| 134 |
+
"-out_lang",
|
| 135 |
+
type=str,
|
| 136 |
+
default="ru",
|
| 137 |
+
help="The bottleneck language if you want to resume training one can"
|
| 138 |
+
"choose between {'es','ru','en','fr','de','pt','zh'} but please have a "
|
| 139 |
+
"look at https://huggingface.co/Helsinki-NLP to make sure the language"
|
| 140 |
+
"pair you ask for is available",
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
parser.add_argument(
|
| 144 |
+
"-input_data_path",
|
| 145 |
+
type=str,
|
| 146 |
+
default=os.path.join(wd, "dataset", "train_neurips_dataset.csv"),
|
| 147 |
+
help="dataset location, please note it should be a CSV file with two"
|
| 148 |
+
'columns : "text" and "summary"',
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
parser.add_argument(
|
| 152 |
+
"-output_data_path",
|
| 153 |
+
type=str,
|
| 154 |
+
default=os.path.join(
|
| 155 |
+
wd, "dataset", "augmented_datas", "augmented_dataset_output.csv"
|
| 156 |
+
),
|
| 157 |
+
help="augmented dataset output location",
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
parser.add_argument(
|
| 161 |
+
"-columns_mapping",
|
| 162 |
+
"--col_map",
|
| 163 |
+
type=json.loads,
|
| 164 |
+
default={"abstract": "text", "tldr": "summary"},
|
| 165 |
+
help="columns names to apply data augmentation on "
|
| 166 |
+
"you have to give a key/value pair dict such that "
|
| 167 |
+
"{'input_column_name1':'output_column_name1'} by default "
|
| 168 |
+
" it is set as {'abstract': 'text', 'tldr':'summary'}, "
|
| 169 |
+
"if you don't want to change the column names,"
|
| 170 |
+
" please provide a dict such that keys=values ",
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
parser.add_argument("-batch_size", type=int, default=25, help="batch_size")
|
| 174 |
+
|
| 175 |
+
args = parser.parse_args()
|
| 176 |
+
do_backtranslation(**vars(args))
|
env.yml
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
name : nlp_paraphraser_env
|
| 2 |
+
|
| 3 |
+
channels:
|
| 4 |
+
- conda-forge
|
| 5 |
+
- pytorch
|
| 6 |
+
- huggingface
|
| 7 |
+
- default
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
dependencies:
|
| 11 |
+
- python=3.10
|
| 12 |
+
- pytorch-gpu
|
| 13 |
+
- albumentations
|
| 14 |
+
- torchvision
|
| 15 |
+
- tqdm
|
| 16 |
+
- streamlit
|
| 17 |
+
- transformers
|
| 18 |
+
- fastapi
|
| 19 |
+
- ipython
|
| 20 |
+
- matplotlib
|
| 21 |
+
- pandas
|
| 22 |
+
- pip
|
| 23 |
+
- scikit-learn
|
| 24 |
+
- streamlit
|
| 25 |
+
- fastapi
|
| 26 |
+
- uvicorn
|
| 27 |
+
- plotly
|
| 28 |
+
- tqdm
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
python=3.10
|
| 2 |
+
pytorch-gpu
|
| 3 |
+
albumentations
|
| 4 |
+
torchvision
|
| 5 |
+
tqdm
|
| 6 |
+
streamlit
|
| 7 |
+
transformers
|
| 8 |
+
fastapi
|
| 9 |
+
ipython
|
| 10 |
+
matplotlib
|
| 11 |
+
pandas
|
| 12 |
+
pip
|
| 13 |
+
scikit-learn
|
| 14 |
+
streamlit
|
| 15 |
+
fastapi
|
| 16 |
+
uvicorn
|
| 17 |
+
plotly
|
| 18 |
+
tqdm
|