Haofei Yu
commited on
support pre-commit (#10)
Browse files- .gitignore +1 -1
- .pre-commit-config.yaml +27 -0
- app.py +73 -45
.gitignore
CHANGED
|
@@ -157,4 +157,4 @@ cython_debug/
|
|
| 157 |
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
| 158 |
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
| 159 |
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
| 160 |
-
#.idea/
|
|
|
|
| 157 |
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
| 158 |
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
| 159 |
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
| 160 |
+
#.idea/
|
.pre-commit-config.yaml
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
repos:
|
| 2 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
| 3 |
+
rev: v3.2.0
|
| 4 |
+
hooks:
|
| 5 |
+
- id: trailing-whitespace
|
| 6 |
+
- id: end-of-file-fixer
|
| 7 |
+
- id: check-yaml
|
| 8 |
+
- id: check-added-large-files
|
| 9 |
+
- repo: https://github.com/pre-commit/mirrors-prettier
|
| 10 |
+
rev: v3.0.1 # Use the sha / tag you want to point at
|
| 11 |
+
hooks:
|
| 12 |
+
- id: prettier
|
| 13 |
+
types_or: [html]
|
| 14 |
+
- repo: https://github.com/psf/black
|
| 15 |
+
rev: 22.12.0
|
| 16 |
+
hooks:
|
| 17 |
+
- id: black
|
| 18 |
+
args: [--line-length=79]
|
| 19 |
+
- repo: https://github.com/pycqa/isort
|
| 20 |
+
rev: 5.12.0
|
| 21 |
+
hooks:
|
| 22 |
+
- id: isort
|
| 23 |
+
args: ["--profile", "black", --line-length=72]
|
| 24 |
+
- repo: https://github.com/kynan/nbstripout
|
| 25 |
+
rev: 0.6.0
|
| 26 |
+
hooks:
|
| 27 |
+
- id: nbstripout
|
app.py
CHANGED
|
@@ -1,16 +1,17 @@
|
|
| 1 |
import os
|
| 2 |
-
import gradio as gr
|
| 3 |
import sys
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
| 5 |
from ctm.ctms.ctm_base import BaseConsciousnessTuringMachine
|
| 6 |
|
| 7 |
ctm = BaseConsciousnessTuringMachine()
|
| 8 |
-
ctm.add_processor("gpt4_text_emotion_processor", group_name="group_1")
|
| 9 |
-
ctm.add_processor("gpt4_text_summary_processor", group_name="group_1")
|
| 10 |
ctm.add_supervisor("gpt4_supervisor")
|
| 11 |
|
| 12 |
DEPLOYED = os.getenv("DEPLOYED", "true").lower() == "true"
|
| 13 |
|
|
|
|
| 14 |
def introduction():
|
| 15 |
with gr.Column(scale=2):
|
| 16 |
gr.Image(
|
|
@@ -22,11 +23,13 @@ def introduction():
|
|
| 22 |
"""
|
| 23 |
)
|
| 24 |
|
|
|
|
| 25 |
def add_processor(processor_name, display_name, state):
|
| 26 |
-
print(
|
| 27 |
ctm.add_processor(processor_name)
|
| 28 |
print(len(ctm.processor_list))
|
| 29 |
-
return display_name +
|
|
|
|
| 30 |
|
| 31 |
def processor_tab():
|
| 32 |
# Categorized model names
|
|
@@ -34,14 +37,14 @@ def processor_tab():
|
|
| 34 |
"gpt4_text_emotion_processor",
|
| 35 |
"gpt4_text_summary_processor",
|
| 36 |
"gpt4_speaker_intent_processor",
|
| 37 |
-
"roberta_text_sentiment_processor"
|
| 38 |
]
|
| 39 |
vision_processors = [
|
| 40 |
"gpt4v_cloth_fashion_processor",
|
| 41 |
"gpt4v_face_emotion_processor",
|
| 42 |
"gpt4v_ocr_processor",
|
| 43 |
"gpt4v_posture",
|
| 44 |
-
"gpt4v_scene_location_processor"
|
| 45 |
]
|
| 46 |
|
| 47 |
with gr.Blocks():
|
|
@@ -49,77 +52,100 @@ def processor_tab():
|
|
| 49 |
with gr.Column(scale=1):
|
| 50 |
gr.Markdown("### Text Processors")
|
| 51 |
for model_name in text_processors:
|
| 52 |
-
display_name =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
button = gr.Button(display_name)
|
| 55 |
-
processor_name = gr.Textbox(
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
button.click(
|
| 58 |
fn=add_processor,
|
| 59 |
inputs=[processor_name, display_name, gr.State()],
|
| 60 |
-
outputs=[button]
|
| 61 |
)
|
| 62 |
|
| 63 |
with gr.Column(scale=1):
|
| 64 |
gr.Markdown("### Vision Processors")
|
| 65 |
for model_name in vision_processors:
|
| 66 |
-
display_name =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
button = gr.Button(display_name)
|
| 69 |
-
processor_name = gr.Textbox(
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
button.click(
|
| 72 |
fn=add_processor,
|
| 73 |
inputs=[processor_name, display_name, gr.State()],
|
| 74 |
-
outputs=[button]
|
| 75 |
)
|
| 76 |
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
| 80 |
def forward(query, content, image, state):
|
| 81 |
-
state[
|
| 82 |
-
ask_processors_output_info, state = ask_processors(
|
|
|
|
|
|
|
| 83 |
uptree_competition_output_info, state = uptree_competition(state)
|
| 84 |
ask_supervisor_output_info, state = ask_supervisor(state)
|
| 85 |
|
| 86 |
-
ctm.downtree_broadcast(state[
|
| 87 |
-
ctm.link_form(state[
|
| 88 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
|
| 91 |
def ask_processors(query, content, image, state):
|
| 92 |
# Simulate processing here
|
| 93 |
processor_output = ctm.ask_processors(
|
| 94 |
-
question=query,
|
| 95 |
-
context=content,
|
| 96 |
image_path=None,
|
| 97 |
audio_path=None,
|
| 98 |
-
video_path=None
|
| 99 |
)
|
| 100 |
-
output_info =
|
| 101 |
for name, info in processor_output.items():
|
| 102 |
output_info += f"{name}: {info['gist']}\n"
|
| 103 |
-
state[
|
| 104 |
return output_info, state
|
| 105 |
|
| 106 |
|
| 107 |
def uptree_competition(state):
|
| 108 |
-
winning_output = ctm.uptree_competition(
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
)
|
| 111 |
-
state['winning_output'] = winning_output
|
| 112 |
-
output_info = 'The winning processor is: {}\nThe winning gist is: {}\n'.format(winning_output['name'], winning_output['gist'])
|
| 113 |
return output_info, state
|
| 114 |
|
| 115 |
|
| 116 |
def ask_supervisor(state):
|
| 117 |
-
question = state[
|
| 118 |
-
winning_output = state[
|
| 119 |
answer, score = ctm.ask_supervisor(question, winning_output)
|
| 120 |
-
output_info = f
|
| 121 |
-
state[
|
| 122 |
-
state[
|
| 123 |
return output_info, state
|
| 124 |
|
| 125 |
|
|
@@ -140,23 +166,25 @@ def interface_tab():
|
|
| 140 |
|
| 141 |
# Outputs
|
| 142 |
processors_output = gr.Textbox(
|
| 143 |
-
label="Processors Output",
|
| 144 |
-
visible=True
|
| 145 |
)
|
| 146 |
competition_output = gr.Textbox(
|
| 147 |
-
label="Up-tree Competition Output",
|
| 148 |
-
visible=True
|
| 149 |
)
|
| 150 |
supervisor_output = gr.Textbox(
|
| 151 |
-
label="Supervisor Output",
|
| 152 |
-
visible=True
|
| 153 |
)
|
| 154 |
|
| 155 |
# Set up button to start or continue processing
|
| 156 |
forward_button.click(
|
| 157 |
fn=forward,
|
| 158 |
inputs=[query, content, image, state],
|
| 159 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
)
|
| 161 |
|
| 162 |
return interface_tab
|
|
@@ -190,4 +218,4 @@ def start_demo():
|
|
| 190 |
|
| 191 |
|
| 192 |
if __name__ == "__main__":
|
| 193 |
-
start_demo()
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
import sys
|
| 3 |
+
|
| 4 |
+
import gradio as gr
|
| 5 |
+
|
| 6 |
+
sys.path.append("../CTM/")
|
| 7 |
from ctm.ctms.ctm_base import BaseConsciousnessTuringMachine
|
| 8 |
|
| 9 |
ctm = BaseConsciousnessTuringMachine()
|
|
|
|
|
|
|
| 10 |
ctm.add_supervisor("gpt4_supervisor")
|
| 11 |
|
| 12 |
DEPLOYED = os.getenv("DEPLOYED", "true").lower() == "true"
|
| 13 |
|
| 14 |
+
|
| 15 |
def introduction():
|
| 16 |
with gr.Column(scale=2):
|
| 17 |
gr.Image(
|
|
|
|
| 23 |
"""
|
| 24 |
)
|
| 25 |
|
| 26 |
+
|
| 27 |
def add_processor(processor_name, display_name, state):
|
| 28 |
+
print("add processor ", processor_name)
|
| 29 |
ctm.add_processor(processor_name)
|
| 30 |
print(len(ctm.processor_list))
|
| 31 |
+
return display_name + " (added)"
|
| 32 |
+
|
| 33 |
|
| 34 |
def processor_tab():
|
| 35 |
# Categorized model names
|
|
|
|
| 37 |
"gpt4_text_emotion_processor",
|
| 38 |
"gpt4_text_summary_processor",
|
| 39 |
"gpt4_speaker_intent_processor",
|
| 40 |
+
"roberta_text_sentiment_processor",
|
| 41 |
]
|
| 42 |
vision_processors = [
|
| 43 |
"gpt4v_cloth_fashion_processor",
|
| 44 |
"gpt4v_face_emotion_processor",
|
| 45 |
"gpt4v_ocr_processor",
|
| 46 |
"gpt4v_posture",
|
| 47 |
+
"gpt4v_scene_location_processor",
|
| 48 |
]
|
| 49 |
|
| 50 |
with gr.Blocks():
|
|
|
|
| 52 |
with gr.Column(scale=1):
|
| 53 |
gr.Markdown("### Text Processors")
|
| 54 |
for model_name in text_processors:
|
| 55 |
+
display_name = (
|
| 56 |
+
model_name.replace("processor", "")
|
| 57 |
+
.replace("_", " ")
|
| 58 |
+
.title()
|
| 59 |
+
)
|
| 60 |
|
| 61 |
button = gr.Button(display_name)
|
| 62 |
+
processor_name = gr.Textbox(
|
| 63 |
+
value=model_name, visible=False
|
| 64 |
+
)
|
| 65 |
+
display_name = gr.Textbox(
|
| 66 |
+
value=display_name, visible=False
|
| 67 |
+
)
|
| 68 |
button.click(
|
| 69 |
fn=add_processor,
|
| 70 |
inputs=[processor_name, display_name, gr.State()],
|
| 71 |
+
outputs=[button],
|
| 72 |
)
|
| 73 |
|
| 74 |
with gr.Column(scale=1):
|
| 75 |
gr.Markdown("### Vision Processors")
|
| 76 |
for model_name in vision_processors:
|
| 77 |
+
display_name = (
|
| 78 |
+
model_name.replace("processor", "")
|
| 79 |
+
.replace("_", " ")
|
| 80 |
+
.title()
|
| 81 |
+
)
|
| 82 |
|
| 83 |
button = gr.Button(display_name)
|
| 84 |
+
processor_name = gr.Textbox(
|
| 85 |
+
value=model_name, visible=False
|
| 86 |
+
)
|
| 87 |
+
display_name = gr.Textbox(
|
| 88 |
+
value=display_name, visible=False
|
| 89 |
+
)
|
| 90 |
button.click(
|
| 91 |
fn=add_processor,
|
| 92 |
inputs=[processor_name, display_name, gr.State()],
|
| 93 |
+
outputs=[button],
|
| 94 |
)
|
| 95 |
|
| 96 |
|
|
|
|
|
|
|
| 97 |
def forward(query, content, image, state):
|
| 98 |
+
state["question"] = query
|
| 99 |
+
ask_processors_output_info, state = ask_processors(
|
| 100 |
+
query, content, image, state
|
| 101 |
+
)
|
| 102 |
uptree_competition_output_info, state = uptree_competition(state)
|
| 103 |
ask_supervisor_output_info, state = ask_supervisor(state)
|
| 104 |
|
| 105 |
+
ctm.downtree_broadcast(state["winning_output"])
|
| 106 |
+
ctm.link_form(state["processor_output"])
|
| 107 |
+
return (
|
| 108 |
+
ask_processors_output_info,
|
| 109 |
+
uptree_competition_output_info,
|
| 110 |
+
ask_supervisor_output_info,
|
| 111 |
+
state,
|
| 112 |
+
)
|
| 113 |
|
| 114 |
|
| 115 |
def ask_processors(query, content, image, state):
|
| 116 |
# Simulate processing here
|
| 117 |
processor_output = ctm.ask_processors(
|
| 118 |
+
question=query,
|
| 119 |
+
context=content,
|
| 120 |
image_path=None,
|
| 121 |
audio_path=None,
|
| 122 |
+
video_path=None,
|
| 123 |
)
|
| 124 |
+
output_info = ""
|
| 125 |
for name, info in processor_output.items():
|
| 126 |
output_info += f"{name}: {info['gist']}\n"
|
| 127 |
+
state["processor_output"] = processor_output
|
| 128 |
return output_info, state
|
| 129 |
|
| 130 |
|
| 131 |
def uptree_competition(state):
|
| 132 |
+
winning_output = ctm.uptree_competition(state["processor_output"])
|
| 133 |
+
state["winning_output"] = winning_output
|
| 134 |
+
output_info = (
|
| 135 |
+
"The winning processor is: {}\nThe winning gist is: {}\n".format(
|
| 136 |
+
winning_output["name"], winning_output["gist"]
|
| 137 |
+
)
|
| 138 |
)
|
|
|
|
|
|
|
| 139 |
return output_info, state
|
| 140 |
|
| 141 |
|
| 142 |
def ask_supervisor(state):
|
| 143 |
+
question = state["question"]
|
| 144 |
+
winning_output = state["winning_output"]
|
| 145 |
answer, score = ctm.ask_supervisor(question, winning_output)
|
| 146 |
+
output_info = f'The answer to the query "{question}" is: {answer}\nThe confidence for answering is: {score}\n'
|
| 147 |
+
state["answer"] = answer
|
| 148 |
+
state["score"] = score
|
| 149 |
return output_info, state
|
| 150 |
|
| 151 |
|
|
|
|
| 166 |
|
| 167 |
# Outputs
|
| 168 |
processors_output = gr.Textbox(
|
| 169 |
+
label="Processors Output", visible=True
|
|
|
|
| 170 |
)
|
| 171 |
competition_output = gr.Textbox(
|
| 172 |
+
label="Up-tree Competition Output", visible=True
|
|
|
|
| 173 |
)
|
| 174 |
supervisor_output = gr.Textbox(
|
| 175 |
+
label="Supervisor Output", visible=True
|
|
|
|
| 176 |
)
|
| 177 |
|
| 178 |
# Set up button to start or continue processing
|
| 179 |
forward_button.click(
|
| 180 |
fn=forward,
|
| 181 |
inputs=[query, content, image, state],
|
| 182 |
+
outputs=[
|
| 183 |
+
processors_output,
|
| 184 |
+
competition_output,
|
| 185 |
+
supervisor_output,
|
| 186 |
+
state,
|
| 187 |
+
],
|
| 188 |
)
|
| 189 |
|
| 190 |
return interface_tab
|
|
|
|
| 218 |
|
| 219 |
|
| 220 |
if __name__ == "__main__":
|
| 221 |
+
start_demo()
|