Spaces:
Runtime error
Runtime error
Epsilon617
commited on
Commit
·
8c952bb
1
Parent(s):
826be26
add model for offline mode run
Browse files- MERT-v0-public/.gitattributes +34 -0
- MERT-v0-public/README.md +115 -0
- MERT-v0-public/__init__.py +0 -0
- MERT-v0-public/__pycache__/__init__.cpython-310.pyc +0 -0
- MERT-v0-public/__pycache__/configuration_MERT.cpython-310.pyc +0 -0
- MERT-v0-public/__pycache__/modeling_MERT.cpython-310.pyc +0 -0
- MERT-v0-public/config.json +84 -0
- MERT-v0-public/configuration_MERT.py +131 -0
- MERT-v0-public/modeling_MERT.py +409 -0
- MERT-v0-public/preprocessor_config.json +9 -0
- MERT-v0-public/pytorch_model.bin +3 -0
- __pycache__/app.cpython-310.pyc +0 -0
- app.py +12 -5
MERT-v0-public/.gitattributes
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
MERT-v0-public/README.md
ADDED
|
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
inference: false
|
| 4 |
+
tags:
|
| 5 |
+
- music
|
| 6 |
+
---
|
| 7 |
+
# Introduction to our series work
|
| 8 |
+
|
| 9 |
+
The development log of our Music Audio Pre-training (m-a-p) model family:
|
| 10 |
+
- 17/03/2023: we release two advanced music understanding models, [MERT-v1-95M](https://huggingface.co/m-a-p/MERT-v1-95M) and [MERT-v1-330M](https://huggingface.co/m-a-p/MERT-v1-330M) , trained with new paradigm and dataset. They outperform the previous models and can better generalize to more tasks.
|
| 11 |
+
- 14/03/2023: we retrained the MERT-v0 model with open-source-only music dataset [MERT-v0-public](https://huggingface.co/m-a-p/MERT-v0-public)
|
| 12 |
+
- 29/12/2022: a music understanding model [MERT-v0](https://huggingface.co/m-a-p/MERT-v0) trained with **MLM** paradigm, which performs better at downstream tasks.
|
| 13 |
+
- 29/10/2022: a pre-trained MIR model [music2vec](https://huggingface.co/m-a-p/music2vec-v1) trained with **BYOL** paradigm.
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
Here is a table for quick model pick-up:
|
| 18 |
+
|
| 19 |
+
| Name | Pre-train Paradigm | Training Data (hour) | Pre-train Context (second) | Model Size | Transformer Layer-Dimension | Feature Rate | Sample Rate | Release Date |
|
| 20 |
+
| ------------------------------------------------------------ | ------------------ | -------------------- | ---------------------------- | ---------- | --------------------------- | ------------ | ----------- | ------------ |
|
| 21 |
+
| [MERT-v1-330M](https://huggingface.co/m-a-p/MERT-v1-330M) | MLM | 160K | 5 | 330M | 24-1024 | 75 Hz | 24K Hz | 17/03/2023 |
|
| 22 |
+
| [MERT-v1-95M](https://huggingface.co/m-a-p/MERT-v1-95M) | MLM | 20K | 5 | 95M | 12-768 | 75 Hz | 24K Hz | 17/03/2023 |
|
| 23 |
+
| [MERT-v0-public](https://huggingface.co/m-a-p/MERT-v0-public) | MLM | 900 | 5 | 95M | 12-768 | 50 Hz | 16K Hz | 14/03/2023 |
|
| 24 |
+
| [MERT-v0](https://huggingface.co/m-a-p/MERT-v0) | MLM | 1000 | 5 | 95 M | 12-768 | 50 Hz | 16K Hz | 29/12/2022 |
|
| 25 |
+
| [music2vec-v1](https://huggingface.co/m-a-p/music2vec-v1) | BYOL | 1000 | 30 | 95 M | 12-768 | 50 Hz | 16K Hz | 30/10/2022 |
|
| 26 |
+
|
| 27 |
+
## Explanation
|
| 28 |
+
|
| 29 |
+
The m-a-p models share the similar model architecture and the most distinguished difference is the paradigm in used pre-training. Other than that, there are several nuance technical configuration needs to know before using:
|
| 30 |
+
|
| 31 |
+
- **Model Size**: the number of parameters that would be loaded to memory. Please select the appropriate size fitting your hardware.
|
| 32 |
+
- **Transformer Layer-Dimension**: The number of transformer layers and the corresponding feature dimensions can be outputted from our model. This is marked out because features extracted by **different layers could have various performance depending on tasks**.
|
| 33 |
+
- **Feature Rate**: Given a 1-second audio input, the number of features output by the model.
|
| 34 |
+
- **Sample Rate**: The frequency of audio that the model is trained with.
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
# Introduction to MERT-v0-public
|
| 38 |
+
|
| 39 |
+
**MERT-v0-public** is a completely unsupervised model trained on **completely non-comercial open-source** [Music4All](https://sites.google.com/view/contact4music4all) dataset and the part of [FMA_full](https://github.com/mdeff/fma) dataset that does not include tag "experimental".
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
The training settings and model usage of MERT-v0-public can be referred to the [MERT-v0 model](https://huggingface.co/m-a-p/MERT-v0).
|
| 43 |
+
|
| 44 |
+
Details are reported at the short article *Large-Scale Pretrained Model for Self-Supervised Music Audio Representation Learning*.
|
| 45 |
+
|
| 46 |
+
# Demo code
|
| 47 |
+
|
| 48 |
+
```python
|
| 49 |
+
from transformers import Wav2Vec2FeatureExtractor
|
| 50 |
+
from transformers import AutoModel
|
| 51 |
+
import torch
|
| 52 |
+
from torch import nn
|
| 53 |
+
import torchaudio.transforms as T
|
| 54 |
+
from datasets import load_dataset
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
# loading our model weights
|
| 58 |
+
model = AutoModel.from_pretrained("m-a-p/MERT-v0-public", trust_remote_code=True)
|
| 59 |
+
# loading the corresponding preprocessor config
|
| 60 |
+
processor = Wav2Vec2FeatureExtractor.from_pretrained("m-a-p/MERT-v0-public",trust_remote_code=True)
|
| 61 |
+
|
| 62 |
+
# load demo audio and set processor
|
| 63 |
+
dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
|
| 64 |
+
dataset = dataset.sort("id")
|
| 65 |
+
sampling_rate = dataset.features["audio"].sampling_rate
|
| 66 |
+
|
| 67 |
+
resample_rate = processor.sampling_rate
|
| 68 |
+
# make sure the sample_rate aligned
|
| 69 |
+
if resample_rate != sampling_rate:
|
| 70 |
+
print(f'setting rate from {sampling_rate} to {resample_rate}')
|
| 71 |
+
resampler = T.Resample(sampling_rate, resample_rate)
|
| 72 |
+
else:
|
| 73 |
+
resampler = None
|
| 74 |
+
|
| 75 |
+
# audio file is decoded on the fly
|
| 76 |
+
if resampler is None:
|
| 77 |
+
input_audio = dataset[0]["audio"]["array"]
|
| 78 |
+
else:
|
| 79 |
+
input_audio = resampler(torch.from_numpy(dataset[0]["audio"]["array"]))
|
| 80 |
+
|
| 81 |
+
inputs = processor(input_audio, sampling_rate=resample_rate, return_tensors="pt")
|
| 82 |
+
with torch.no_grad():
|
| 83 |
+
outputs = model(**inputs, output_hidden_states=True)
|
| 84 |
+
|
| 85 |
+
# take a look at the output shape, there are 13 layers of representation
|
| 86 |
+
# each layer performs differently in different downstream tasks, you should choose empirically
|
| 87 |
+
all_layer_hidden_states = torch.stack(outputs.hidden_states).squeeze()
|
| 88 |
+
print(all_layer_hidden_states.shape) # [13 layer, Time steps, 768 feature_dim]
|
| 89 |
+
|
| 90 |
+
# for utterance level classification tasks, you can simply reduce the representation in time
|
| 91 |
+
time_reduced_hidden_states = all_layer_hidden_states.mean(-2)
|
| 92 |
+
print(time_reduced_hidden_states.shape) # [13, 768]
|
| 93 |
+
|
| 94 |
+
# you can even use a learnable weighted average representation
|
| 95 |
+
aggregator = nn.Conv1d(in_channels=13, out_channels=1, kernel_size=1)
|
| 96 |
+
weighted_avg_hidden_states = aggregator(time_reduced_hidden_states.unsqueeze(0)).squeeze()
|
| 97 |
+
print(weighted_avg_hidden_states.shape) # [768]
|
| 98 |
+
```
|
| 99 |
+
|
| 100 |
+
# Citation
|
| 101 |
+
```shell
|
| 102 |
+
@article{li2022large,
|
| 103 |
+
title={Large-Scale Pretrained Model for Self-Supervised Music Audio Representation Learning},
|
| 104 |
+
author={Li, Yizhi and Yuan, Ruibin and Zhang, Ge and Ma, Yinghao and Lin, Chenghua and Chen, Xingran and Ragni, Anton and Yin, Hanzhi and Hu, Zhijie and He, Haoyu and others},
|
| 105 |
+
year={2022}
|
| 106 |
+
}
|
| 107 |
+
|
| 108 |
+
@article{li2022map,
|
| 109 |
+
title={MAP-Music2Vec: A Simple and Effective Baseline for Self-Supervised Music Audio Representation Learning},
|
| 110 |
+
author={Li, Yizhi and Yuan, Ruibin and Zhang, Ge and Ma, Yinghao and Lin, Chenghua and Chen, Xingran and Ragni, Anton and Yin, Hanzhi and Hu, Zhijie and He, Haoyu and others},
|
| 111 |
+
journal={arXiv preprint arXiv:2212.02508},
|
| 112 |
+
year={2022}
|
| 113 |
+
}
|
| 114 |
+
|
| 115 |
+
```
|
MERT-v0-public/__init__.py
ADDED
|
File without changes
|
MERT-v0-public/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (161 Bytes). View file
|
|
|
MERT-v0-public/__pycache__/configuration_MERT.cpython-310.pyc
ADDED
|
Binary file (3.37 kB). View file
|
|
|
MERT-v0-public/__pycache__/modeling_MERT.cpython-310.pyc
ADDED
|
Binary file (10.3 kB). View file
|
|
|
MERT-v0-public/config.json
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "m-a-p/MERT-v0-public",
|
| 3 |
+
"activation_dropout": 0.1,
|
| 4 |
+
"apply_spec_augment": true,
|
| 5 |
+
"architectures": [
|
| 6 |
+
"MERTModel"
|
| 7 |
+
],
|
| 8 |
+
"attention_relax": -1.0,
|
| 9 |
+
"auto_map": {
|
| 10 |
+
"AutoConfig": "configuration_MERT.MERTConfig",
|
| 11 |
+
"AutoModel": "modeling_MERT.MERTModel"
|
| 12 |
+
},
|
| 13 |
+
"model_type": "mert_model",
|
| 14 |
+
"attention_dropout": 0.1,
|
| 15 |
+
"bos_token_id": 1,
|
| 16 |
+
"classifier_proj_size": 256,
|
| 17 |
+
"conv_bias": false,
|
| 18 |
+
"conv_dim": [
|
| 19 |
+
512,
|
| 20 |
+
512,
|
| 21 |
+
512,
|
| 22 |
+
512,
|
| 23 |
+
512,
|
| 24 |
+
512,
|
| 25 |
+
512
|
| 26 |
+
],
|
| 27 |
+
"conv_kernel": [
|
| 28 |
+
10,
|
| 29 |
+
3,
|
| 30 |
+
3,
|
| 31 |
+
3,
|
| 32 |
+
3,
|
| 33 |
+
2,
|
| 34 |
+
2
|
| 35 |
+
],
|
| 36 |
+
"conv_stride": [
|
| 37 |
+
5,
|
| 38 |
+
2,
|
| 39 |
+
2,
|
| 40 |
+
2,
|
| 41 |
+
2,
|
| 42 |
+
2,
|
| 43 |
+
2
|
| 44 |
+
],
|
| 45 |
+
"ctc_loss_reduction": "sum",
|
| 46 |
+
"ctc_zero_infinity": false,
|
| 47 |
+
"do_stable_layer_norm": false,
|
| 48 |
+
"eos_token_id": 2,
|
| 49 |
+
"feat_extract_activation": "gelu",
|
| 50 |
+
"feat_extract_dropout": 0.0,
|
| 51 |
+
"feat_extract_norm": "group",
|
| 52 |
+
"feat_proj_dropout": 0.1,
|
| 53 |
+
"feat_proj_layer_norm": true,
|
| 54 |
+
"feature_extractor_cqt": false,
|
| 55 |
+
"feature_extractor_cqt_bins": 336,
|
| 56 |
+
"final_dropout": 0.1,
|
| 57 |
+
"gradient_checkpointing": false,
|
| 58 |
+
"hidden_act": "gelu",
|
| 59 |
+
"hidden_dropout": 0.1,
|
| 60 |
+
"hidden_dropout_prob": 0.1,
|
| 61 |
+
"hidden_size": 768,
|
| 62 |
+
"initializer_range": 0.02,
|
| 63 |
+
"intermediate_size": 3072,
|
| 64 |
+
"layer_norm_eps": 1e-05,
|
| 65 |
+
"layerdrop": 0.1,
|
| 66 |
+
"mask_feature_length": 10,
|
| 67 |
+
"mask_feature_min_masks": 0,
|
| 68 |
+
"mask_feature_prob": 0.0,
|
| 69 |
+
"mask_time_length": 10,
|
| 70 |
+
"mask_time_min_masks": 2,
|
| 71 |
+
"mask_time_prob": 0.05,
|
| 72 |
+
"num_attention_heads": 12,
|
| 73 |
+
"num_conv_pos_embedding_groups": 16,
|
| 74 |
+
"num_conv_pos_embeddings": 128,
|
| 75 |
+
"num_feat_extract_layers": 7,
|
| 76 |
+
"num_hidden_layers": 12,
|
| 77 |
+
"pad_token_id": 0,
|
| 78 |
+
"sample_rate": 16000,
|
| 79 |
+
"tokenizer_class": "Wav2Vec2CTCTokenizer",
|
| 80 |
+
"torch_dtype": "float32",
|
| 81 |
+
"transformers_version": "4.25.1",
|
| 82 |
+
"use_weighted_layer_sum": false,
|
| 83 |
+
"vocab_size": 32
|
| 84 |
+
}
|
MERT-v0-public/configuration_MERT.py
ADDED
|
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
MERT model configuration
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import functools
|
| 6 |
+
import operator
|
| 7 |
+
|
| 8 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 9 |
+
from transformers.utils import logging
|
| 10 |
+
|
| 11 |
+
logger = logging.get_logger(__name__)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class MERTConfig(PretrainedConfig):
|
| 16 |
+
r"""
|
| 17 |
+
"""
|
| 18 |
+
model_type = "mert_model"
|
| 19 |
+
|
| 20 |
+
def __init__(
|
| 21 |
+
self,
|
| 22 |
+
vocab_size=32,
|
| 23 |
+
hidden_size=768,
|
| 24 |
+
num_hidden_layers=12,
|
| 25 |
+
num_attention_heads=12,
|
| 26 |
+
intermediate_size=3072,
|
| 27 |
+
hidden_act="gelu",
|
| 28 |
+
hidden_dropout=0.1,
|
| 29 |
+
activation_dropout=0.1,
|
| 30 |
+
attention_dropout=0.1,
|
| 31 |
+
feat_proj_layer_norm=True,
|
| 32 |
+
feat_proj_dropout=0.0,
|
| 33 |
+
final_dropout=0.1,
|
| 34 |
+
layerdrop=0.1,
|
| 35 |
+
initializer_range=0.02,
|
| 36 |
+
layer_norm_eps=1e-5,
|
| 37 |
+
feat_extract_norm="group",
|
| 38 |
+
feat_extract_activation="gelu",
|
| 39 |
+
conv_dim=(512, 512, 512, 512, 512, 512, 512),
|
| 40 |
+
conv_stride=(5, 2, 2, 2, 2, 2, 2),
|
| 41 |
+
conv_kernel=(10, 3, 3, 3, 3, 2, 2),
|
| 42 |
+
conv_bias=False,
|
| 43 |
+
num_conv_pos_embeddings=128,
|
| 44 |
+
num_conv_pos_embedding_groups=16,
|
| 45 |
+
do_stable_layer_norm=False,
|
| 46 |
+
apply_spec_augment=True,
|
| 47 |
+
mask_time_prob=0.05,
|
| 48 |
+
mask_time_length=10,
|
| 49 |
+
mask_time_min_masks=2,
|
| 50 |
+
mask_feature_prob=0.0,
|
| 51 |
+
mask_feature_length=10,
|
| 52 |
+
mask_feature_min_masks=0,
|
| 53 |
+
ctc_loss_reduction="sum",
|
| 54 |
+
ctc_zero_infinity=False,
|
| 55 |
+
use_weighted_layer_sum=False,
|
| 56 |
+
classifier_proj_size=256,
|
| 57 |
+
pad_token_id=0,
|
| 58 |
+
bos_token_id=1,
|
| 59 |
+
eos_token_id=2,
|
| 60 |
+
feature_extractor_cqt=False,
|
| 61 |
+
feature_extractor_cqt_bins=336,
|
| 62 |
+
deepnorm=False,
|
| 63 |
+
attention_relax=-1.0,
|
| 64 |
+
**kwargs
|
| 65 |
+
):
|
| 66 |
+
super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id)
|
| 67 |
+
self.hidden_size = hidden_size
|
| 68 |
+
self.feat_extract_norm = feat_extract_norm
|
| 69 |
+
self.feat_extract_activation = feat_extract_activation
|
| 70 |
+
self.conv_dim = list(conv_dim)
|
| 71 |
+
self.conv_stride = list(conv_stride)
|
| 72 |
+
self.conv_kernel = list(conv_kernel)
|
| 73 |
+
self.conv_bias = conv_bias
|
| 74 |
+
self.num_conv_pos_embeddings = num_conv_pos_embeddings
|
| 75 |
+
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
|
| 76 |
+
self.num_feat_extract_layers = len(self.conv_dim)
|
| 77 |
+
self.num_hidden_layers = num_hidden_layers
|
| 78 |
+
self.intermediate_size = intermediate_size
|
| 79 |
+
self.hidden_act = hidden_act
|
| 80 |
+
self.num_attention_heads = num_attention_heads
|
| 81 |
+
self.hidden_dropout = hidden_dropout
|
| 82 |
+
self.attention_dropout = attention_dropout
|
| 83 |
+
self.activation_dropout = activation_dropout
|
| 84 |
+
self.feat_proj_layer_norm = feat_proj_layer_norm
|
| 85 |
+
self.feat_proj_dropout = feat_proj_dropout
|
| 86 |
+
self.final_dropout = final_dropout
|
| 87 |
+
self.layerdrop = layerdrop
|
| 88 |
+
self.layer_norm_eps = layer_norm_eps
|
| 89 |
+
self.initializer_range = initializer_range
|
| 90 |
+
self.vocab_size = vocab_size
|
| 91 |
+
self.do_stable_layer_norm = do_stable_layer_norm
|
| 92 |
+
self.use_weighted_layer_sum = use_weighted_layer_sum
|
| 93 |
+
self.classifier_proj_size = classifier_proj_size
|
| 94 |
+
|
| 95 |
+
if (
|
| 96 |
+
(len(self.conv_stride) != self.num_feat_extract_layers)
|
| 97 |
+
or (len(self.conv_kernel) != self.num_feat_extract_layers)
|
| 98 |
+
or (len(self.conv_dim) != self.num_feat_extract_layers)
|
| 99 |
+
):
|
| 100 |
+
raise ValueError(
|
| 101 |
+
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
|
| 102 |
+
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
|
| 103 |
+
f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,"
|
| 104 |
+
f" `len(config.conv_kernel) = {len(self.conv_kernel)}`."
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
|
| 108 |
+
self.apply_spec_augment = apply_spec_augment
|
| 109 |
+
self.mask_time_prob = mask_time_prob
|
| 110 |
+
self.mask_time_length = mask_time_length
|
| 111 |
+
self.mask_time_min_masks = mask_time_min_masks
|
| 112 |
+
self.mask_feature_prob = mask_feature_prob
|
| 113 |
+
self.mask_feature_length = mask_feature_length
|
| 114 |
+
self.mask_feature_min_masks = mask_feature_min_masks
|
| 115 |
+
|
| 116 |
+
# ctc loss
|
| 117 |
+
self.ctc_loss_reduction = ctc_loss_reduction
|
| 118 |
+
self.ctc_zero_infinity = ctc_zero_infinity
|
| 119 |
+
|
| 120 |
+
# cqt feature extractor
|
| 121 |
+
self.feature_extractor_cqt = feature_extractor_cqt
|
| 122 |
+
self.feature_extractor_cqt_bins = feature_extractor_cqt_bins
|
| 123 |
+
|
| 124 |
+
# deepnorm: up-scale weighted residual conection + down-scale initial value transformer encoder
|
| 125 |
+
self.deepnorm = deepnorm
|
| 126 |
+
|
| 127 |
+
self.attention_relax = attention_relax
|
| 128 |
+
|
| 129 |
+
@property
|
| 130 |
+
def inputs_to_logits_ratio(self):
|
| 131 |
+
return functools.reduce(operator.mul, self.conv_stride, 1)
|
MERT-v0-public/modeling_MERT.py
ADDED
|
@@ -0,0 +1,409 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
MERT model definition.
|
| 3 |
+
We largely adapt codes from:
|
| 4 |
+
1. https://github.com/huggingface/transformers/blob/main/src/transformers/models/hubert/modeling_hubert.py
|
| 5 |
+
2. https://github.com/facebookresearch/fairseq/blob/main/fairseq/models/wav2vec/wav2vec2.py
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
from typing import Optional, Tuple, Union
|
| 9 |
+
from transformers.modeling_outputs import BaseModelOutput
|
| 10 |
+
import torch
|
| 11 |
+
from torch import nn
|
| 12 |
+
|
| 13 |
+
from transformers.models.hubert.modeling_hubert import (
|
| 14 |
+
HubertFeatureEncoder,
|
| 15 |
+
HubertModel,
|
| 16 |
+
HubertEncoderStableLayerNorm,
|
| 17 |
+
HubertEncoder,
|
| 18 |
+
HubertEncoderLayer,
|
| 19 |
+
HubertPositionalConvEmbedding,
|
| 20 |
+
HubertAttention,
|
| 21 |
+
HubertFeedForward,
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
try:
|
| 25 |
+
from nnAudio import features as nnAudioFeatures
|
| 26 |
+
NNAUDIO_INSTALLED=True
|
| 27 |
+
except:
|
| 28 |
+
print("WARNING: feature_extractor_cqt requires the libray 'nnAudio'")
|
| 29 |
+
NNAUDIO_INSTALLED=False
|
| 30 |
+
|
| 31 |
+
from .configuration_MERT import MERTConfig
|
| 32 |
+
|
| 33 |
+
class MERTFeatureProjection(nn.Module):
|
| 34 |
+
def __init__(self, config):
|
| 35 |
+
super().__init__()
|
| 36 |
+
self.feat_proj_layer_norm = config.feat_proj_layer_norm
|
| 37 |
+
self.feature_extractor_cqt = config.feature_extractor_cqt
|
| 38 |
+
|
| 39 |
+
if self.feature_extractor_cqt:
|
| 40 |
+
# v3 concat features
|
| 41 |
+
self.feature_dimension = config.conv_dim[-1] + config.feature_extractor_cqt_bins
|
| 42 |
+
print(f"feature dimention: {self.feature_dimension}")
|
| 43 |
+
else:
|
| 44 |
+
self.feature_dimension = config.conv_dim[-1]
|
| 45 |
+
if self.feat_proj_layer_norm:
|
| 46 |
+
self.layer_norm = nn.LayerNorm(self.feature_dimension, eps=config.layer_norm_eps)
|
| 47 |
+
self.projection = nn.Linear(self.feature_dimension, config.hidden_size)
|
| 48 |
+
self.dropout = nn.Dropout(config.feat_proj_dropout)
|
| 49 |
+
|
| 50 |
+
def forward(self, hidden_states):
|
| 51 |
+
# non-projected hidden states are needed for quantization
|
| 52 |
+
if self.feat_proj_layer_norm:
|
| 53 |
+
hidden_states = self.layer_norm(hidden_states)
|
| 54 |
+
hidden_states = self.projection(hidden_states)
|
| 55 |
+
hidden_states = self.dropout(hidden_states)
|
| 56 |
+
return hidden_states
|
| 57 |
+
|
| 58 |
+
class MERTModel(HubertModel):
|
| 59 |
+
# overwrite config class
|
| 60 |
+
config_class = MERTConfig
|
| 61 |
+
base_model_prefix = "mert_model"
|
| 62 |
+
def __init__(
|
| 63 |
+
self,
|
| 64 |
+
config: MERTConfig,
|
| 65 |
+
) -> None:
|
| 66 |
+
"""
|
| 67 |
+
initialize the with the grandparent method HubertPreTrainedModel.__init__()
|
| 68 |
+
and modify the HuBERTModel.__init__()
|
| 69 |
+
"""
|
| 70 |
+
super(HubertModel, self).__init__(config)
|
| 71 |
+
|
| 72 |
+
self.config = config
|
| 73 |
+
|
| 74 |
+
self.feature_extractor = HubertFeatureEncoder(config)
|
| 75 |
+
self.feature_projection = MERTFeatureProjection(config) # replace Feature Projection for introcuing new feature
|
| 76 |
+
|
| 77 |
+
if self.config.feature_extractor_cqt:
|
| 78 |
+
assert NNAUDIO_INSTALLED, "ERROR: feature_extractor_cqt requires the libray 'nnAudio', try after `pip install nnAudio` "
|
| 79 |
+
print('initializing cqt extractor for MERT')
|
| 80 |
+
self.feature_extractor_cqt = nnAudioFeatures.cqt.CQT(sr=self.config.sample_rate, hop_length=self.config.sample_rate//50, fmin=32.7,
|
| 81 |
+
fmax=None, n_bins=self.config.feature_extractor_cqt_bins, bins_per_octave=self.config.feature_extractor_cqt_bins//7,
|
| 82 |
+
filter_scale=1, norm=1, window='hann', center=True,
|
| 83 |
+
pad_mode='constant', trainable=False,
|
| 84 |
+
output_format='Magnitude', verbose=True)
|
| 85 |
+
|
| 86 |
+
if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0:
|
| 87 |
+
self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_())
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
if config.do_stable_layer_norm:
|
| 91 |
+
assert not config.deepnorm, "must use post-layer_norm with deepnorm"
|
| 92 |
+
self.encoder = HubertEncoderStableLayerNorm(config)
|
| 93 |
+
else:
|
| 94 |
+
if config.deepnorm:
|
| 95 |
+
self.encoder = HubertEncoder_extend(config)
|
| 96 |
+
else:
|
| 97 |
+
self.encoder = HubertEncoder(config)
|
| 98 |
+
|
| 99 |
+
# Initialize weights and apply final processing
|
| 100 |
+
self.post_init()
|
| 101 |
+
|
| 102 |
+
def forward(self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, mask_time_indices: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None) -> Union[Tuple, BaseModelOutput]:
|
| 103 |
+
|
| 104 |
+
# return super().forward(input_values, attention_mask, mask_time_indices, output_attentions, output_hidden_states, return_dict)
|
| 105 |
+
|
| 106 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 107 |
+
output_hidden_states = (
|
| 108 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 109 |
+
)
|
| 110 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 111 |
+
|
| 112 |
+
extract_features = self.feature_extractor(input_values)
|
| 113 |
+
extract_features = extract_features.transpose(1, 2)
|
| 114 |
+
|
| 115 |
+
# add additional cqt features for transformer input
|
| 116 |
+
if self.config.feature_extractor_cqt:
|
| 117 |
+
features_cqt = self.feature_extractor_cqt(input_values).transpose(1, 2)
|
| 118 |
+
features_cqt = features_cqt[:,:extract_features.shape[1],:] # align shape
|
| 119 |
+
# # v2
|
| 120 |
+
# features_cqt = self.post_cqt_feature_proj(features_cqt)
|
| 121 |
+
# extract_features = self.feature_projection.layer_norm(extract_features) + self.feature_projection.layer_norm(features_cqt) #v2
|
| 122 |
+
# v3
|
| 123 |
+
extract_features = torch.cat([extract_features,features_cqt], 2)
|
| 124 |
+
|
| 125 |
+
if attention_mask is not None:
|
| 126 |
+
# compute reduced attention_mask corresponding to feature vectors
|
| 127 |
+
attention_mask = self._get_feature_vector_attention_mask(extract_features.shape[1], attention_mask)
|
| 128 |
+
|
| 129 |
+
hidden_states = self.feature_projection(extract_features)
|
| 130 |
+
hidden_states = self._mask_hidden_states(hidden_states, mask_time_indices=mask_time_indices)
|
| 131 |
+
|
| 132 |
+
encoder_outputs = self.encoder(
|
| 133 |
+
hidden_states,
|
| 134 |
+
attention_mask=attention_mask,
|
| 135 |
+
output_attentions=output_attentions,
|
| 136 |
+
output_hidden_states=output_hidden_states,
|
| 137 |
+
return_dict=return_dict,
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
hidden_states = encoder_outputs[0] # take last_hidden from encoder output
|
| 141 |
+
|
| 142 |
+
if not return_dict:
|
| 143 |
+
return (hidden_states,) + encoder_outputs[1:]
|
| 144 |
+
|
| 145 |
+
return BaseModelOutput(
|
| 146 |
+
last_hidden_state=hidden_states,
|
| 147 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 148 |
+
attentions=encoder_outputs.attentions,
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
class HubertEncoder_extend(HubertEncoder):
|
| 153 |
+
def __init__(self, config):
|
| 154 |
+
# super().__init__()
|
| 155 |
+
# call nn module initialization
|
| 156 |
+
nn.Module.__init__(self)
|
| 157 |
+
# super(HubertEncoder_extend, self).__init__()
|
| 158 |
+
|
| 159 |
+
self.config = config
|
| 160 |
+
self.pos_conv_embed = HubertPositionalConvEmbedding(config)
|
| 161 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 162 |
+
self.dropout = nn.Dropout(config.hidden_dropout)
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
self.layers = nn.ModuleList([HubertEncoderLayerExtend(config) for _ in range(config.num_hidden_layers)])
|
| 166 |
+
|
| 167 |
+
self.gradient_checkpointing = False
|
| 168 |
+
|
| 169 |
+
if config.deepnorm:
|
| 170 |
+
import math
|
| 171 |
+
init_scale = math.pow(8.0 * config.num_hidden_layers, 0.25)
|
| 172 |
+
for name, p in self.named_parameters():
|
| 173 |
+
if (
|
| 174 |
+
"feed_forward.intermediate_dense" in name
|
| 175 |
+
or "feed_forward.output_dense" in name
|
| 176 |
+
or "out_proj" in name
|
| 177 |
+
or "v_proj" in name
|
| 178 |
+
):
|
| 179 |
+
p.data.div_(init_scale)
|
| 180 |
+
|
| 181 |
+
class HubertEncoderLayerExtend(HubertEncoderLayer):
|
| 182 |
+
def __init__(self, config):
|
| 183 |
+
nn.Module.__init__(self)
|
| 184 |
+
# super(HubertEncoderLayerExtend, self).__init__()
|
| 185 |
+
if config.attention_relax > 0 :
|
| 186 |
+
self.attention = HubertAttention_extend(
|
| 187 |
+
embed_dim=config.hidden_size,
|
| 188 |
+
num_heads=config.num_attention_heads,
|
| 189 |
+
dropout=config.attention_dropout,
|
| 190 |
+
is_decoder=False,
|
| 191 |
+
attention_relax=config.attention_relax,
|
| 192 |
+
)
|
| 193 |
+
else:
|
| 194 |
+
self.attention = HubertAttention(
|
| 195 |
+
embed_dim=config.hidden_size,
|
| 196 |
+
num_heads=config.num_attention_heads,
|
| 197 |
+
dropout=config.attention_dropout,
|
| 198 |
+
is_decoder=False,
|
| 199 |
+
)
|
| 200 |
+
self.dropout = nn.Dropout(config.hidden_dropout)
|
| 201 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 202 |
+
self.feed_forward = HubertFeedForward(config)
|
| 203 |
+
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 204 |
+
|
| 205 |
+
if config.deepnorm:
|
| 206 |
+
import math
|
| 207 |
+
self.residual_alpha = math.pow(2.0 * config.num_hidden_layers, 0.25)
|
| 208 |
+
else:
|
| 209 |
+
self.residual_alpha = 1.0
|
| 210 |
+
|
| 211 |
+
def residual_connection(self, x, residual):
|
| 212 |
+
'''
|
| 213 |
+
residual: input before f()
|
| 214 |
+
x: output of f(residual)
|
| 215 |
+
'''
|
| 216 |
+
return residual * self.residual_alpha + x
|
| 217 |
+
|
| 218 |
+
def forward(self, hidden_states, attention_mask=None, output_attentions=False):
|
| 219 |
+
attn_residual = hidden_states
|
| 220 |
+
hidden_states, attn_weights, _ = self.attention(
|
| 221 |
+
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
|
| 222 |
+
)
|
| 223 |
+
hidden_states = self.dropout(hidden_states)
|
| 224 |
+
|
| 225 |
+
# hidden_states = attn_residual + hidden_states
|
| 226 |
+
hidden_states = self.residual_connection(hidden_states, attn_residual)
|
| 227 |
+
|
| 228 |
+
hidden_states = self.layer_norm(hidden_states)
|
| 229 |
+
|
| 230 |
+
# hidden_states = hidden_states + self.feed_forward(hidden_states)
|
| 231 |
+
ffn_residual = hidden_states
|
| 232 |
+
hidden_states = self.feed_forward(hidden_states)
|
| 233 |
+
hidden_states = self.residual_connection(hidden_states, ffn_residual)
|
| 234 |
+
|
| 235 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
| 236 |
+
|
| 237 |
+
outputs = (hidden_states,)
|
| 238 |
+
|
| 239 |
+
if output_attentions:
|
| 240 |
+
outputs += (attn_weights,)
|
| 241 |
+
|
| 242 |
+
return outputs
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
class HubertAttention_extend(nn.Module):
|
| 246 |
+
def __init__(
|
| 247 |
+
self,
|
| 248 |
+
embed_dim: int,
|
| 249 |
+
num_heads: int,
|
| 250 |
+
dropout: float = 0.0,
|
| 251 |
+
is_decoder: bool = False,
|
| 252 |
+
bias: bool = True,
|
| 253 |
+
attention_relax: float = -1.0,
|
| 254 |
+
):
|
| 255 |
+
super().__init__()
|
| 256 |
+
# nn.Module.__init__(self)
|
| 257 |
+
self.embed_dim = embed_dim
|
| 258 |
+
self.num_heads = num_heads
|
| 259 |
+
self.dropout = dropout
|
| 260 |
+
self.head_dim = embed_dim // num_heads
|
| 261 |
+
|
| 262 |
+
if (self.head_dim * num_heads) != self.embed_dim:
|
| 263 |
+
raise ValueError(
|
| 264 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
| 265 |
+
f" and `num_heads`: {num_heads})."
|
| 266 |
+
)
|
| 267 |
+
self.scaling = self.head_dim**-0.5
|
| 268 |
+
self.is_decoder = is_decoder
|
| 269 |
+
|
| 270 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
| 271 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
| 272 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
| 273 |
+
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
| 274 |
+
|
| 275 |
+
if attention_relax > 0:
|
| 276 |
+
self.attention_relax = attention_relax
|
| 277 |
+
|
| 278 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
| 279 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
| 280 |
+
|
| 281 |
+
def forward(
|
| 282 |
+
self,
|
| 283 |
+
hidden_states: torch.Tensor,
|
| 284 |
+
key_value_states: Optional[torch.Tensor] = None,
|
| 285 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 286 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 287 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
| 288 |
+
output_attentions: bool = False,
|
| 289 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 290 |
+
"""Input shape: Batch x Time x Channel"""
|
| 291 |
+
|
| 292 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
| 293 |
+
# for the decoder
|
| 294 |
+
is_cross_attention = key_value_states is not None
|
| 295 |
+
|
| 296 |
+
bsz, tgt_len, _ = hidden_states.size()
|
| 297 |
+
|
| 298 |
+
# get query proj
|
| 299 |
+
query_states = self.q_proj(hidden_states) * self.scaling
|
| 300 |
+
# get key, value proj
|
| 301 |
+
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
|
| 302 |
+
# is checking that the `sequence_length` of the `past_key_value` is the same as
|
| 303 |
+
# the provided `key_value_states` to support prefix tuning
|
| 304 |
+
if (
|
| 305 |
+
is_cross_attention
|
| 306 |
+
and past_key_value is not None
|
| 307 |
+
and past_key_value[0].shape[2] == key_value_states.shape[1]
|
| 308 |
+
):
|
| 309 |
+
# reuse k,v, cross_attentions
|
| 310 |
+
key_states = past_key_value[0]
|
| 311 |
+
value_states = past_key_value[1]
|
| 312 |
+
elif is_cross_attention:
|
| 313 |
+
# cross_attentions
|
| 314 |
+
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
| 315 |
+
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
| 316 |
+
elif past_key_value is not None:
|
| 317 |
+
# reuse k, v, self_attention
|
| 318 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
| 319 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
| 320 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
| 321 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
| 322 |
+
else:
|
| 323 |
+
# self_attention
|
| 324 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
| 325 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
| 326 |
+
|
| 327 |
+
if self.is_decoder:
|
| 328 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
| 329 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
| 330 |
+
# key/value_states (first "if" case)
|
| 331 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
| 332 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
| 333 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
| 334 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
| 335 |
+
past_key_value = (key_states, value_states)
|
| 336 |
+
|
| 337 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
| 338 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
| 339 |
+
key_states = key_states.view(*proj_shape)
|
| 340 |
+
value_states = value_states.view(*proj_shape)
|
| 341 |
+
|
| 342 |
+
src_len = key_states.size(1)
|
| 343 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
| 344 |
+
|
| 345 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
| 346 |
+
raise ValueError(
|
| 347 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
| 348 |
+
f" {attn_weights.size()}"
|
| 349 |
+
)
|
| 350 |
+
|
| 351 |
+
if attention_mask is not None:
|
| 352 |
+
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
| 353 |
+
raise ValueError(
|
| 354 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
| 355 |
+
)
|
| 356 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
| 357 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
| 358 |
+
|
| 359 |
+
if self.attention_relax > 0:
|
| 360 |
+
# => (bsz, self.num_heads, tgt_len, src_len)
|
| 361 |
+
# attn_weights_relax = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)/self.attention_relax
|
| 362 |
+
# => (bsz*self.num_heads, tgt_len, src_len)
|
| 363 |
+
attn_weights_relax = attn_weights / self.attention_relax
|
| 364 |
+
|
| 365 |
+
# => (bsz* self.num_heads, tgt_len, 1)
|
| 366 |
+
attn_max_relax = torch.max(attn_weights_relax, dim=-1, keepdim=False).unsqueeze(2)
|
| 367 |
+
attn_weights = (attn_weights_relax - attn_max_relax) * self.attention_relax
|
| 368 |
+
|
| 369 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
| 370 |
+
|
| 371 |
+
if layer_head_mask is not None:
|
| 372 |
+
if layer_head_mask.size() != (self.num_heads,):
|
| 373 |
+
raise ValueError(
|
| 374 |
+
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
|
| 375 |
+
f" {layer_head_mask.size()}"
|
| 376 |
+
)
|
| 377 |
+
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
| 378 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
| 379 |
+
|
| 380 |
+
if output_attentions:
|
| 381 |
+
# this operation is a bit awkward, but it's required to
|
| 382 |
+
# make sure that attn_weights keeps its gradient.
|
| 383 |
+
# In order to do so, attn_weights have to be reshaped
|
| 384 |
+
# twice and have to be reused in the following
|
| 385 |
+
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
| 386 |
+
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
| 387 |
+
else:
|
| 388 |
+
attn_weights_reshaped = None
|
| 389 |
+
|
| 390 |
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
| 391 |
+
|
| 392 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
| 393 |
+
|
| 394 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
| 395 |
+
raise ValueError(
|
| 396 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
| 397 |
+
f" {attn_output.size()}"
|
| 398 |
+
)
|
| 399 |
+
|
| 400 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
| 401 |
+
attn_output = attn_output.transpose(1, 2)
|
| 402 |
+
|
| 403 |
+
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
| 404 |
+
# partitioned aross GPUs when using tensor-parallelism.
|
| 405 |
+
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
| 406 |
+
|
| 407 |
+
attn_output = self.out_proj(attn_output)
|
| 408 |
+
|
| 409 |
+
return attn_output, attn_weights_reshaped, past_key_value
|
MERT-v0-public/preprocessor_config.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"do_normalize": false,
|
| 3 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
| 4 |
+
"feature_size": 1,
|
| 5 |
+
"padding_side": "right",
|
| 6 |
+
"padding_value": 0,
|
| 7 |
+
"return_attention_mask": true,
|
| 8 |
+
"sampling_rate": 16000
|
| 9 |
+
}
|
MERT-v0-public/pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9b25bde740483579d9895f35d074a949f6593ef48449b6d76e26ee3c0e5e9acb
|
| 3 |
+
size 377552987
|
__pycache__/app.cpython-310.pyc
CHANGED
|
Binary files a/__pycache__/app.cpython-310.pyc and b/__pycache__/app.cpython-310.pyc differ
|
|
|
app.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
from transformers import Wav2Vec2FeatureExtractor
|
| 3 |
from transformers import AutoModel
|
| 4 |
import torch
|
|
@@ -6,6 +7,10 @@ from torch import nn
|
|
| 6 |
import torchaudio
|
| 7 |
import torchaudio.transforms as T
|
| 8 |
import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
# input cr: https://huggingface.co/spaces/thealphhamerc/audio-to-text/blob/main/app.py
|
| 10 |
|
| 11 |
|
|
@@ -21,7 +26,7 @@ logger.addHandler(ch)
|
|
| 21 |
|
| 22 |
|
| 23 |
inputs = [gr.components.Audio(type="filepath", label="Add music audio file"),
|
| 24 |
-
gr.
|
| 25 |
]
|
| 26 |
outputs = [gr.components.Textbox()]
|
| 27 |
# outputs = [gr.components.Textbox(), transcription_df]
|
|
@@ -33,10 +38,12 @@ audio_examples = [
|
|
| 33 |
# ["input/example-2.wav"],
|
| 34 |
]
|
| 35 |
|
| 36 |
-
# Load the model
|
| 37 |
-
model = AutoModel.from_pretrained("m-a-p/MERT-v0-public", trust_remote_code=True)
|
| 38 |
-
#
|
| 39 |
-
|
|
|
|
|
|
|
| 40 |
|
| 41 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 42 |
model.to(device)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
#
|
| 3 |
from transformers import Wav2Vec2FeatureExtractor
|
| 4 |
from transformers import AutoModel
|
| 5 |
import torch
|
|
|
|
| 7 |
import torchaudio
|
| 8 |
import torchaudio.transforms as T
|
| 9 |
import logging
|
| 10 |
+
|
| 11 |
+
import importlib
|
| 12 |
+
modeling_MERT = importlib.import_module("MERT-v0-public.modeling_MERT")
|
| 13 |
+
|
| 14 |
# input cr: https://huggingface.co/spaces/thealphhamerc/audio-to-text/blob/main/app.py
|
| 15 |
|
| 16 |
|
|
|
|
| 26 |
|
| 27 |
|
| 28 |
inputs = [gr.components.Audio(type="filepath", label="Add music audio file"),
|
| 29 |
+
gr.components.Audio(source="microphone",optional=True, type="filepath"),
|
| 30 |
]
|
| 31 |
outputs = [gr.components.Textbox()]
|
| 32 |
# outputs = [gr.components.Textbox(), transcription_df]
|
|
|
|
| 38 |
# ["input/example-2.wav"],
|
| 39 |
]
|
| 40 |
|
| 41 |
+
# Load the model and the corresponding preprocessor config
|
| 42 |
+
# model = AutoModel.from_pretrained("m-a-p/MERT-v0-public", trust_remote_code=True)
|
| 43 |
+
# processor = Wav2Vec2FeatureExtractor.from_pretrained("m-a-p/MERT-v0-public",trust_remote_code=True)
|
| 44 |
+
model = modeling_MERT.MERTModel.from_pretrained("./MERT-v0-public")
|
| 45 |
+
processor = Wav2Vec2FeatureExtractor.from_pretrained("./MERT-v0-public")
|
| 46 |
+
|
| 47 |
|
| 48 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 49 |
model.to(device)
|