# ------------------------------------------------------------------------ # RF-DETR # Copyright (c) 2025 Roboflow. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ # Modified from LW-DETR (https://github.com/Atten4Vis/LW-DETR) # Copyright (c) 2024 Baidu. All Rights Reserved. # ------------------------------------------------------------------------ # Modified from Conditional DETR (https://github.com/Atten4Vis/ConditionalDETR) # Copyright (c) 2021 Microsoft. All Rights Reserved. # ------------------------------------------------------------------------ # Modified from DETR (https://github.com/facebookresearch/detr) # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # ------------------------------------------------------------------------ # Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR) # Copyright (c) 2020 SenseTime. All Rights Reserved. # ------------------------------------------------------------------------ """ LW-DETR model and criterion classes """ import copy import math from typing import Callable import torch import torch.nn.functional as F from torch import nn from rfdetr.util import box_ops from rfdetr.util.misc import (NestedTensor, nested_tensor_from_tensor_list, accuracy, get_world_size, is_dist_avail_and_initialized) from rfdetr.models.backbone import build_backbone from rfdetr.models.matcher import build_matcher from rfdetr.models.transformer import build_transformer class LWDETR(nn.Module): """ This is the Group DETR v3 module that performs object detection """ def __init__(self, backbone, transformer, num_classes, num_queries, aux_loss=False, group_detr=1, two_stage=False, lite_refpoint_refine=False, bbox_reparam=False): """ Initializes the model. Parameters: backbone: torch module of the backbone to be used. See backbone.py transformer: torch module of the transformer architecture. See transformer.py num_classes: number of object classes num_queries: number of object queries, ie detection slot. This is the maximal number of objects Conditional DETR can detect in a single image. For COCO, we recommend 100 queries. aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used. group_detr: Number of groups to speed detr training. Default is 1. lite_refpoint_refine: TODO """ super().__init__() self.num_queries = num_queries self.transformer = transformer hidden_dim = transformer.d_model self.class_embed = nn.Linear(hidden_dim, num_classes) self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3) query_dim=4 self.refpoint_embed = nn.Embedding(num_queries * group_detr, query_dim) self.query_feat = nn.Embedding(num_queries * group_detr, hidden_dim) nn.init.constant_(self.refpoint_embed.weight.data, 0) self.backbone = backbone self.aux_loss = aux_loss self.group_detr = group_detr # iter update self.lite_refpoint_refine = lite_refpoint_refine if not self.lite_refpoint_refine: self.transformer.decoder.bbox_embed = self.bbox_embed else: self.transformer.decoder.bbox_embed = None self.bbox_reparam = bbox_reparam # init prior_prob setting for focal loss prior_prob = 0.01 bias_value = -math.log((1 - prior_prob) / prior_prob) self.class_embed.bias.data = torch.ones(num_classes) * bias_value # init bbox_mebed nn.init.constant_(self.bbox_embed.layers[-1].weight.data, 0) nn.init.constant_(self.bbox_embed.layers[-1].bias.data, 0) # two_stage self.two_stage = two_stage if self.two_stage: self.transformer.enc_out_bbox_embed = nn.ModuleList( [copy.deepcopy(self.bbox_embed) for _ in range(group_detr)]) self.transformer.enc_out_class_embed = nn.ModuleList( [copy.deepcopy(self.class_embed) for _ in range(group_detr)]) self._export = False def reinitialize_detection_head(self, num_classes): # Create new classification head del self.class_embed self.add_module("class_embed", nn.Linear(self.transformer.d_model, num_classes)) # Initialize with focal loss bias adjustment prior_prob = 0.01 bias_value = -math.log((1 - prior_prob) / prior_prob) self.class_embed.bias.data = torch.ones(num_classes) * bias_value if self.two_stage: del self.transformer.enc_out_class_embed self.transformer.add_module("enc_out_class_embed", nn.ModuleList( [copy.deepcopy(self.class_embed) for _ in range(self.group_detr)])) def export(self): self._export = True self._forward_origin = self.forward self.forward = self.forward_export for name, m in self.named_modules(): if hasattr(m, "export") and isinstance(m.export, Callable) and hasattr(m, "_export") and not m._export: m.export() def forward(self, samples: NestedTensor, targets=None): """ The forward expects a NestedTensor, which consists of: - samples.tensor: batched images, of shape [batch_size x 3 x H x W] - samples.mask: a binary mask of shape [batch_size x H x W], containing 1 on padded pixels It returns a dict with the following elements: - "pred_logits": the classification logits (including no-object) for all queries. Shape= [batch_size x num_queries x num_classes] - "pred_boxes": The normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These values are normalized in [0, 1], relative to the size of each individual image (disregarding possible padding). See PostProcess for information on how to retrieve the unnormalized bounding box. - "aux_outputs": Optional, only returned when auxilary losses are activated. It is a list of dictionnaries containing the two above keys for each decoder layer. """ if isinstance(samples, (list, torch.Tensor)): samples = nested_tensor_from_tensor_list(samples) features, poss = self.backbone(samples) srcs = [] masks = [] for l, feat in enumerate(features): src, mask = feat.decompose() srcs.append(src) masks.append(mask) assert mask is not None if self.training: refpoint_embed_weight = self.refpoint_embed.weight query_feat_weight = self.query_feat.weight else: # only use one group in inference refpoint_embed_weight = self.refpoint_embed.weight[:self.num_queries] query_feat_weight = self.query_feat.weight[:self.num_queries] hs, ref_unsigmoid, hs_enc, ref_enc = self.transformer( srcs, masks, poss, refpoint_embed_weight, query_feat_weight) if hs is not None: if self.bbox_reparam: outputs_coord_delta = self.bbox_embed(hs) outputs_coord_cxcy = outputs_coord_delta[..., :2] * ref_unsigmoid[..., 2:] + ref_unsigmoid[..., :2] outputs_coord_wh = outputs_coord_delta[..., 2:].exp() * ref_unsigmoid[..., 2:] outputs_coord = torch.concat( [outputs_coord_cxcy, outputs_coord_wh], dim=-1 ) else: outputs_coord = (self.bbox_embed(hs) + ref_unsigmoid).sigmoid() outputs_class = self.class_embed(hs) out = {'pred_logits': outputs_class[-1], 'pred_boxes': outputs_coord[-1]} if self.aux_loss: out['aux_outputs'] = self._set_aux_loss(outputs_class, outputs_coord) if self.two_stage: group_detr = self.group_detr if self.training else 1 hs_enc_list = hs_enc.chunk(group_detr, dim=1) cls_enc = [] for g_idx in range(group_detr): cls_enc_gidx = self.transformer.enc_out_class_embed[g_idx](hs_enc_list[g_idx]) cls_enc.append(cls_enc_gidx) cls_enc = torch.cat(cls_enc, dim=1) if hs is not None: out['enc_outputs'] = {'pred_logits': cls_enc, 'pred_boxes': ref_enc} else: out = {'pred_logits': cls_enc, 'pred_boxes': ref_enc} return out def forward_export(self, tensors): srcs, _, poss = self.backbone(tensors) # only use one group in inference refpoint_embed_weight = self.refpoint_embed.weight[:self.num_queries] query_feat_weight = self.query_feat.weight[:self.num_queries] hs, ref_unsigmoid, hs_enc, ref_enc = self.transformer( srcs, None, poss, refpoint_embed_weight, query_feat_weight) if hs is not None: if self.bbox_reparam: outputs_coord_delta = self.bbox_embed(hs) outputs_coord_cxcy = outputs_coord_delta[..., :2] * ref_unsigmoid[..., 2:] + ref_unsigmoid[..., :2] outputs_coord_wh = outputs_coord_delta[..., 2:].exp() * ref_unsigmoid[..., 2:] outputs_coord = torch.concat( [outputs_coord_cxcy, outputs_coord_wh], dim=-1 ) else: outputs_coord = (self.bbox_embed(hs) + ref_unsigmoid).sigmoid() outputs_class = self.class_embed(hs) else: assert self.two_stage, "if not using decoder, two_stage must be True" outputs_class = self.transformer.enc_out_class_embed[0](hs_enc) outputs_coord = ref_enc return outputs_coord, outputs_class @torch.jit.unused def _set_aux_loss(self, outputs_class, outputs_coord): # this is a workaround to make torchscript happy, as torchscript # doesn't support dictionary with non-homogeneous values, such # as a dict having both a Tensor and a list. return [{'pred_logits': a, 'pred_boxes': b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])] def update_drop_path(self, drop_path_rate, vit_encoder_num_layers): """ """ dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, vit_encoder_num_layers)] for i in range(vit_encoder_num_layers): if hasattr(self.backbone[0].encoder, 'blocks'): # Not aimv2 if hasattr(self.backbone[0].encoder.blocks[i].drop_path, 'drop_prob'): self.backbone[0].encoder.blocks[i].drop_path.drop_prob = dp_rates[i] else: # aimv2 if hasattr(self.backbone[0].encoder.trunk.blocks[i].drop_path, 'drop_prob'): self.backbone[0].encoder.trunk.blocks[i].drop_path.drop_prob = dp_rates[i] def update_dropout(self, drop_rate): for module in self.transformer.modules(): if isinstance(module, nn.Dropout): module.p = drop_rate class SetCriterion(nn.Module): """ This class computes the loss for Conditional DETR. The process happens in two steps: 1) we compute hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair of matched ground-truth / prediction (supervise class and box) """ def __init__(self, num_classes, matcher, weight_dict, focal_alpha, losses, group_detr=1, sum_group_losses=False, use_varifocal_loss=False, use_position_supervised_loss=False, ia_bce_loss=False,): """ Create the criterion. Parameters: num_classes: number of object categories, omitting the special no-object category matcher: module able to compute a matching between targets and proposals weight_dict: dict containing as key the names of the losses and as values their relative weight. losses: list of all the losses to be applied. See get_loss for list of available losses. focal_alpha: alpha in Focal Loss group_detr: Number of groups to speed detr training. Default is 1. """ super().__init__() self.num_classes = num_classes self.matcher = matcher self.weight_dict = weight_dict self.losses = losses self.focal_alpha = focal_alpha self.group_detr = group_detr self.sum_group_losses = sum_group_losses self.use_varifocal_loss = use_varifocal_loss self.use_position_supervised_loss = use_position_supervised_loss self.ia_bce_loss = ia_bce_loss def loss_labels(self, outputs, targets, indices, num_boxes, log=True): """Classification loss (Binary focal loss) targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes] """ assert 'pred_logits' in outputs src_logits = outputs['pred_logits'] idx = self._get_src_permutation_idx(indices) target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)]) if self.ia_bce_loss: alpha = self.focal_alpha gamma = 2 src_boxes = outputs['pred_boxes'][idx] target_boxes = torch.cat([t['boxes'][i] for t, (_, i) in zip(targets, indices)], dim=0) iou_targets=torch.diag(box_ops.box_iou( box_ops.box_cxcywh_to_xyxy(src_boxes.detach()), box_ops.box_cxcywh_to_xyxy(target_boxes))[0]) pos_ious = iou_targets.clone().detach() prob = src_logits.sigmoid() #init positive weights and negative weights pos_weights = torch.zeros_like(src_logits) neg_weights = prob ** gamma pos_ind=[id for id in idx] pos_ind.append(target_classes_o) t = prob[pos_ind].pow(alpha) * pos_ious.pow(1 - alpha) t = torch.clamp(t, 0.01).detach() pos_weights[pos_ind] = t.to(pos_weights.dtype) neg_weights[pos_ind] = 1 - t.to(neg_weights.dtype) # a reformulation of the standard loss_ce = - pos_weights * prob.log() - neg_weights * (1 - prob).log() # with a focus on statistical stability by using fused logsigmoid loss_ce = neg_weights * src_logits - F.logsigmoid(src_logits) * (pos_weights + neg_weights) loss_ce = loss_ce.sum() / num_boxes elif self.use_position_supervised_loss: src_boxes = outputs['pred_boxes'][idx] target_boxes = torch.cat([t['boxes'][i] for t, (_, i) in zip(targets, indices)], dim=0) iou_targets=torch.diag(box_ops.box_iou( box_ops.box_cxcywh_to_xyxy(src_boxes.detach()), box_ops.box_cxcywh_to_xyxy(target_boxes))[0]) pos_ious = iou_targets.clone().detach() # pos_ious_func = pos_ious ** 2 pos_ious_func = pos_ious cls_iou_func_targets = torch.zeros((src_logits.shape[0], src_logits.shape[1],self.num_classes), dtype=src_logits.dtype, device=src_logits.device) pos_ind=[id for id in idx] pos_ind.append(target_classes_o) cls_iou_func_targets[pos_ind] = pos_ious_func norm_cls_iou_func_targets = cls_iou_func_targets \ / (cls_iou_func_targets.view(cls_iou_func_targets.shape[0], -1, 1).amax(1, True) + 1e-8) loss_ce = position_supervised_loss(src_logits, norm_cls_iou_func_targets, num_boxes, alpha=self.focal_alpha, gamma=2) * src_logits.shape[1] elif self.use_varifocal_loss: src_boxes = outputs['pred_boxes'][idx] target_boxes = torch.cat([t['boxes'][i] for t, (_, i) in zip(targets, indices)], dim=0) iou_targets=torch.diag(box_ops.box_iou( box_ops.box_cxcywh_to_xyxy(src_boxes.detach()), box_ops.box_cxcywh_to_xyxy(target_boxes))[0]) pos_ious = iou_targets.clone().detach() cls_iou_targets = torch.zeros((src_logits.shape[0], src_logits.shape[1],self.num_classes), dtype=src_logits.dtype, device=src_logits.device) pos_ind=[id for id in idx] pos_ind.append(target_classes_o) cls_iou_targets[pos_ind] = pos_ious loss_ce = sigmoid_varifocal_loss(src_logits, cls_iou_targets, num_boxes, alpha=self.focal_alpha, gamma=2) * src_logits.shape[1] else: target_classes = torch.full(src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device) target_classes[idx] = target_classes_o target_classes_onehot = torch.zeros([src_logits.shape[0], src_logits.shape[1], src_logits.shape[2]+1], dtype=src_logits.dtype, layout=src_logits.layout, device=src_logits.device) target_classes_onehot.scatter_(2, target_classes.unsqueeze(-1), 1) target_classes_onehot = target_classes_onehot[:,:,:-1] loss_ce = sigmoid_focal_loss(src_logits, target_classes_onehot, num_boxes, alpha=self.focal_alpha, gamma=2) * src_logits.shape[1] losses = {'loss_ce': loss_ce} if log: # TODO this should probably be a separate loss, not hacked in this one here losses['class_error'] = 100 - accuracy(src_logits[idx], target_classes_o)[0] return losses @torch.no_grad() def loss_cardinality(self, outputs, targets, indices, num_boxes): """ Compute the cardinality error, ie the absolute error in the number of predicted non-empty boxes This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients """ pred_logits = outputs['pred_logits'] device = pred_logits.device tgt_lengths = torch.as_tensor([len(v["labels"]) for v in targets], device=device) # Count the number of predictions that are NOT "no-object" (which is the last class) card_pred = (pred_logits.argmax(-1) != pred_logits.shape[-1] - 1).sum(1) card_err = F.l1_loss(card_pred.float(), tgt_lengths.float()) losses = {'cardinality_error': card_err} return losses def loss_boxes(self, outputs, targets, indices, num_boxes): """Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4] The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size. """ assert 'pred_boxes' in outputs idx = self._get_src_permutation_idx(indices) src_boxes = outputs['pred_boxes'][idx] target_boxes = torch.cat([t['boxes'][i] for t, (_, i) in zip(targets, indices)], dim=0) loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction='none') losses = {} losses['loss_bbox'] = loss_bbox.sum() / num_boxes loss_giou = 1 - torch.diag(box_ops.generalized_box_iou( box_ops.box_cxcywh_to_xyxy(src_boxes), box_ops.box_cxcywh_to_xyxy(target_boxes))) losses['loss_giou'] = loss_giou.sum() / num_boxes return losses def _get_src_permutation_idx(self, indices): # permute predictions following indices batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)]) src_idx = torch.cat([src for (src, _) in indices]) return batch_idx, src_idx def _get_tgt_permutation_idx(self, indices): # permute targets following indices batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)]) tgt_idx = torch.cat([tgt for (_, tgt) in indices]) return batch_idx, tgt_idx def get_loss(self, loss, outputs, targets, indices, num_boxes, **kwargs): loss_map = { 'labels': self.loss_labels, 'cardinality': self.loss_cardinality, 'boxes': self.loss_boxes, } assert loss in loss_map, f'do you really want to compute {loss} loss?' return loss_map[loss](outputs, targets, indices, num_boxes, **kwargs) def forward(self, outputs, targets): """ This performs the loss computation. Parameters: outputs: dict of tensors, see the output specification of the model for the format targets: list of dicts, such that len(targets) == batch_size. The expected keys in each dict depends on the losses applied, see each loss' doc """ group_detr = self.group_detr if self.training else 1 outputs_without_aux = {k: v for k, v in outputs.items() if k != 'aux_outputs'} # Retrieve the matching between the outputs of the last layer and the targets indices = self.matcher(outputs_without_aux, targets, group_detr=group_detr) # Compute the average number of target boxes accross all nodes, for normalization purposes num_boxes = sum(len(t["labels"]) for t in targets) if not self.sum_group_losses: num_boxes = num_boxes * group_detr num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device) if is_dist_avail_and_initialized(): torch.distributed.all_reduce(num_boxes) num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item() # Compute all the requested losses losses = {} for loss in self.losses: losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes)) # In case of auxiliary losses, we repeat this process with the output of each intermediate layer. if 'aux_outputs' in outputs: for i, aux_outputs in enumerate(outputs['aux_outputs']): indices = self.matcher(aux_outputs, targets, group_detr=group_detr) for loss in self.losses: kwargs = {} if loss == 'labels': # Logging is enabled only for the last layer kwargs = {'log': False} l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_boxes, **kwargs) l_dict = {k + f'_{i}': v for k, v in l_dict.items()} losses.update(l_dict) if 'enc_outputs' in outputs: enc_outputs = outputs['enc_outputs'] indices = self.matcher(enc_outputs, targets, group_detr=group_detr) for loss in self.losses: kwargs = {} if loss == 'labels': # Logging is enabled only for the last layer kwargs['log'] = False l_dict = self.get_loss(loss, enc_outputs, targets, indices, num_boxes, **kwargs) l_dict = {k + f'_enc': v for k, v in l_dict.items()} losses.update(l_dict) return losses def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2): """ Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002. Args: inputs: A float tensor of arbitrary shape. The predictions for each example. targets: A float tensor with the same shape as inputs. Stores the binary classification label for each element in inputs (0 for the negative class and 1 for the positive class). alpha: (optional) Weighting factor in range (0,1) to balance positive vs negative examples. Default = -1 (no weighting). gamma: Exponent of the modulating factor (1 - p_t) to balance easy vs hard examples. Returns: Loss tensor """ prob = inputs.sigmoid() ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none") p_t = prob * targets + (1 - prob) * (1 - targets) loss = ce_loss * ((1 - p_t) ** gamma) if alpha >= 0: alpha_t = alpha * targets + (1 - alpha) * (1 - targets) loss = alpha_t * loss return loss.mean(1).sum() / num_boxes def sigmoid_varifocal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2): prob = inputs.sigmoid() focal_weight = targets * (targets > 0.0).float() + \ (1 - alpha) * (prob - targets).abs().pow(gamma) * \ (targets <= 0.0).float() ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none") loss = ce_loss * focal_weight return loss.mean(1).sum() / num_boxes def position_supervised_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2): prob = inputs.sigmoid() ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none") loss = ce_loss * (torch.abs(targets - prob) ** gamma) if alpha >= 0: alpha_t = alpha * (targets > 0.0).float() + (1 - alpha) * (targets <= 0.0).float() loss = alpha_t * loss return loss.mean(1).sum() / num_boxes class PostProcess(nn.Module): """ This module converts the model's output into the format expected by the coco api""" def __init__(self, num_select=300) -> None: super().__init__() self.num_select = num_select @torch.no_grad() def forward(self, outputs, target_sizes): """ Perform the computation Parameters: outputs: raw outputs of the model target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch For evaluation, this must be the original image size (before any data augmentation) For visualization, this should be the image size after data augment, but before padding """ out_logits, out_bbox = outputs['pred_logits'], outputs['pred_boxes'] assert len(out_logits) == len(target_sizes) assert target_sizes.shape[1] == 2 prob = out_logits.sigmoid() topk_values, topk_indexes = torch.topk(prob.view(out_logits.shape[0], -1), self.num_select, dim=1) scores = topk_values topk_boxes = topk_indexes // out_logits.shape[2] labels = topk_indexes % out_logits.shape[2] boxes = box_ops.box_cxcywh_to_xyxy(out_bbox) boxes = torch.gather(boxes, 1, topk_boxes.unsqueeze(-1).repeat(1,1,4)) # and from relative [0, 1] to absolute [0, height] coordinates img_h, img_w = target_sizes.unbind(1) scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1) boxes = boxes * scale_fct[:, None, :] results = [{'scores': s, 'labels': l, 'boxes': b} for s, l, b in zip(scores, labels, boxes)] return results class MLP(nn.Module): """ Very simple multi-layer perceptron (also called FFN)""" def __init__(self, input_dim, hidden_dim, output_dim, num_layers): super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) def forward(self, x): for i, layer in enumerate(self.layers): x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) return x def build_model(args): # the `num_classes` naming here is somewhat misleading. # it indeed corresponds to `max_obj_id + 1`, where max_obj_id # is the maximum id for a class in your dataset. For example, # COCO has a max_obj_id of 90, so we pass `num_classes` to be 91. # As another example, for a dataset that has a single class with id 1, # you should pass `num_classes` to be 2 (max_obj_id + 1). # For more details on this, check the following discussion # https://github.com/facebookresearch/detr/issues/108#issuecomment-650269223 num_classes = args.num_classes + 1 device = torch.device(args.device) backbone = build_backbone( encoder=args.encoder, vit_encoder_num_layers=args.vit_encoder_num_layers, pretrained_encoder=args.pretrained_encoder, window_block_indexes=args.window_block_indexes, drop_path=args.drop_path, out_channels=args.hidden_dim, out_feature_indexes=args.out_feature_indexes, projector_scale=args.projector_scale, use_cls_token=args.use_cls_token, hidden_dim=args.hidden_dim, position_embedding=args.position_embedding, freeze_encoder=args.freeze_encoder, layer_norm=args.layer_norm, target_shape=args.shape if hasattr(args, 'shape') else (args.resolution, args.resolution) if hasattr(args, 'resolution') else (640, 640), rms_norm=args.rms_norm, backbone_lora=args.backbone_lora, force_no_pretrain=args.force_no_pretrain, gradient_checkpointing=args.gradient_checkpointing, load_dinov2_weights=args.pretrain_weights is None, patch_size=args.patch_size, num_windows=args.num_windows, positional_encoding_size=args.positional_encoding_size, ) if args.encoder_only: return backbone[0].encoder, None, None if args.backbone_only: return backbone, None, None args.num_feature_levels = len(args.projector_scale) transformer = build_transformer(args) model = LWDETR( backbone, transformer, num_classes=num_classes, num_queries=args.num_queries, aux_loss=args.aux_loss, group_detr=args.group_detr, two_stage=args.two_stage, lite_refpoint_refine=args.lite_refpoint_refine, bbox_reparam=args.bbox_reparam, ) return model def build_criterion_and_postprocessors(args): device = torch.device(args.device) matcher = build_matcher(args) weight_dict = {'loss_ce': args.cls_loss_coef, 'loss_bbox': args.bbox_loss_coef} weight_dict['loss_giou'] = args.giou_loss_coef # TODO this is a hack if args.aux_loss: aux_weight_dict = {} for i in range(args.dec_layers - 1): aux_weight_dict.update({k + f'_{i}': v for k, v in weight_dict.items()}) if args.two_stage: aux_weight_dict.update({k + f'_enc': v for k, v in weight_dict.items()}) weight_dict.update(aux_weight_dict) losses = ['labels', 'boxes', 'cardinality'] try: sum_group_losses = args.sum_group_losses except: sum_group_losses = False criterion = SetCriterion(args.num_classes + 1, matcher=matcher, weight_dict=weight_dict, focal_alpha=args.focal_alpha, losses=losses, group_detr=args.group_detr, sum_group_losses=sum_group_losses, use_varifocal_loss = args.use_varifocal_loss, use_position_supervised_loss=args.use_position_supervised_loss, ia_bce_loss=args.ia_bce_loss) criterion.to(device) postprocessors = {'bbox': PostProcess(num_select=args.num_select)} return criterion, postprocessors